
PROGRAMMING IN

ANSI C

— Sixth Edition —

ABOUT THE AUTHOR

E Balagurusamy, is presently the Chairman of EBG Foundation, Coimbatore. In the past he has also

held the positions of member, Union Public Service Commission, New Delhi and Vice-Chancellor, Anna

 Fundamentals of Computers

 Computing Fundamentals and C Programming

 Programming in C#, 3/e

 Programming in Java, 4/e

 Object-Oriented Programming with C++, 5/e

 Programming in BASIC, 3/e

 Numerical Methods

 Reliability Engineering

A recipient of numerous honors and awards, he has been listed in the Directory of Who’s Who of

Tata McGraw Hill Education Private Limited
NEW DELHI

McGraw-Hill Offices

New Delhi New York St Louis San Francisco Auckland Bogotá Caracas

Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal

San Juan Santiago Singapore Sydney Tokyo Toronto

PROGRAMMING IN

ANSI C

— Sixth Edition —

E Balagurusamy

Chairman

EBG Foundation

Coimbatore

Published by the Tata McGraw Hill Education Private Limited,

7 West Patel Nagar, New Delhi 110 008.

Programming in ANSI C (6e)

Copyright © 2012, 2011, 2007, 2004, 2002, 1992, 1982 by Tata McGraw Hill Education Private Limited.

No part of this publication may be reproduced or distributed in any form or by any means, electronic,

mechanical, photocopying, recording, or otherwise or stored in a database or retrieval system without

the prior written permission of the publishers. The program listings (if any) may be entered, stored and

executed in a computer system, but they may not be reproduced for publication.

This edition can be exported from India only by the publishers,

Tata McGraw Hill Education Private Limited.

ISBN (13): 978-1-25-900461-2

ISBN (10): 1-25-900461-9

Vice President and Managing Director—MHE: Ajay Shukla

Head—Higher Education Publishing and Marketing: Vibha Mahajan

Publishing Manager—SEM & Tech Ed.: Shalini Jha

Asst. Sponsoring Editor: Smruti Snigdha

Copy Editor: Preyoshi Kundu

Sr Production Manager: Satinder S Baveja

Production Executive: Anuj K. Shriwastava

Sr Media Developer: Baldev Raj

Marketing Manager—Higher Ed.: Vijay Sarathi

Sr Product Specialist—SEM & Tech Voc.: Tina Jajoriya

General Manager—Production: Rajender P Ghansela

Production Manager: Reji Kumar

Graphic Designer—Cover: Meenu Raghav

Information contained in this work has been obtained by Tata McGraw-Hill, from sources believed to be

reliable. However, neither Tata McGraw-Hill nor its authors guarantee the accuracy or completeness of

any information published herein, and neither Tata McGraw-Hill nor its authors shall be responsible for

any errors, omissions, or damages arising out of use of this information. This work is published with the

understanding that Tata McGraw-Hill and its authors are supplying information but are not attempting

to render engineering or other professional services. If such services are required, the assistance of an

appropriate professional should be sought.

Typeset at Tej Composers, WZ-391, Madipur, New Delhi 110063, and printed at

Cover Printer:

Tata McGraw-Hill

CONTENTS

About the Author ii

Preface to the Sixth Edition xi

1 Overview of C 1

 1.1 History of C 1

 1.2 Importance of C 3

3

6

7

9

10

12

13

14

 1.11 Unix System 14

 1.12 MS-D System 17

 Review Questions 18

 Programming Exercises 20

2 Constants, Variables, and Data Types 22

 2.1 Introduction 22

 2.2 Character Set 22

24

24

 2.5 Constants 25

 2.6 Variables 29

30

 2.8 Declaration of Variables 33

37

38

43

45

45

Contentsvi

45

 Review Questions 48

 Programming Exercises 50

3 Operators and Expressions 52

 3.1 Introduction 52

52

55

56

57

59

60

60

61

 3.10 Arithmetic Expressions 63

 3.11 Evaluation of Expressions 63

64

 3.13 Some Computational Problems 66

68

71

 3.16 Mathematical Functions 73

 Review Questions 77

 Programming Exercises 80

4 Managing Input and Output Operations 83

 4.1 Introduction 83

84

87

 4.4 Formatted Input 88

96

 Review Questions 108

 Programming Exercises 110

5 Decision Making and Branching 112

 5.1 Introduction 112

112

 5.3 Simple If Statement 113

116

120

123

127

Contents vii

131

135

 Review Questions 143

 Programming Exercises 147

6 Decision Making and Looping 151

 6.1 Introduction 151

153

155

158

168

176

 Review Questions 184

 Programming Exercises 188

7 Arrays 192

 7.1 Introduction 192

194

195

197

203

207

 7.7 Multi-Dimensional Arrays 215

 7.8 Dynamic Arrays 216

 7.9 More about Arrays 217

 Review Questions 230

 Programming Exercises 233

8 Character Arrays and Strings 237

 8.1 Introduction 237

238

239

245

249

251

252

253

259

261

 Review Questions 266

 Programming Exercises 268

Contentsviii

 9.1 Introduction 270

270

271

274

274

277

 9.7 Function Calls 278

 9.8 Function Declaration 280

281

282

284

287

292

293

294

295

296

301

302

312

 Review Questions 317

 Programming Exercises 321

 10.1 Introduction 324

324

326

328

 10.5 Structure Initialization 330

331

333

 10.8 Arrays of Structures 334

 10.9 Arrays within Structures 336

 10.10 Structures within Structures 338

 10.11 Structures and Functions 340

 10.12 Unions 343

 10.13 Size of Structures 344

 10.14 Bit Fields 344

 Review Questions 351

 Programming Exercises 355

Contents ix

11 Pointers 357

 11.1 Introduction 357

357

360

361

 11.5 Initialization of Pointer Variables 362

363

 11.7 Chain of Pointers 366

 11.8 Pointer Expressions 366

 11.9 Pointer Increments and Scale Factor 368

 11.10 Pointers and Arrays 369

372

 11.12 Array of Pointers 374

375

378

 11.15 Pointers to Functions 379

 11.16 Pointers and Structures 382

384

 Review Questions 391

 Programming Exercises 394

 12.1 Introduction 395

395

397

398

404

407

414

 Review Questions 416

 Programming Exercises 418

13 Dynamic Memory Allocation and Linked Lists 419

 13.1 Introduction 419

 13.2 Dynamic Memory Allocation 419

420

422

423

424

425

428

Contentsx

428

429

431

435

438

440

 Review Questions 448

 Programming Exercises 450

14 The Preprocessor 452

 14.1 Introduction 452

 14.2 Macro Substitution 453

 14.3 File Inclusion 457

 14.4 Compiler Control Directives 457

 14.5 ANSI Additions 461

 Review Questions 463

 Programming Exercises 464

15 Developing a C Program: Some Guidelines 465

 15.1 Introduction 465

465

467

469

476

478

 Review Questions 478

Appendix II: ASCII Values of Characters 485

Appendix III: ANSI

Appendix IV: Projects 491

Bibliography 555

Index 556

C

New to this Edition

pleasurable activity!

Organization of the Book

and their execution. Chapter 2 discusses how to declare the constants, variables and data types.

Chapter 3 Chapter 4 details

Chapter 5

Chapter 6

Chapters 7 and 8

covered in Chapter 8. are on functions, structures and unions. Pointers, perhaps

Chapter 11 in the most user-friendly manner.

Chapters 12 and 13 Chapter 14

Chapter 15

xii

and educational.

 New colored edition
have been included in boxes.
also show real-life applications.
areas. Numerous chapter-end questions and exercises provide ample opportunities to the readers to

review the concepts learned and to practice their applications.
questions Separate appendix dedicated to latest compiler C99 features

Web Supplement

http://www.mhhe.com/balagurusamy/ansic6 which

E Balagurusamy

Publisher’s Note

tmh.csefeedback@gmail.com

Please report any piracy spotted by you as well!

Preface to the Sixth Edition

1 OVERVIEW OF C

Key Terms printf I Program

1.1 HISTORY OF C

‘C’ seems a strange name for a programming language. But this strange sounding language is one of

the most popular computer languages today because it is a structured, high-level, machine independent

language. It allows software developers to develop programs without worrying about the hardware

platforms where they will be implemented.

The root of all modern languages is ALGOL, introduced in the early 1960s. ALGOL was the

widely used in Europe. ALGOL gave the concept of structured programming to the computer science

In 1967, Martin Richards developed a language called BCPL (Basic Combined Programming

Language) primarily for writing system software. In 1970, Ken Thompson created a language using

system at Bell Laboratories. Both BCPL and B were “typeless” system programming languages.

many concepts from these languages and added the concept of data types and other powerful features.

superhighway.

For many years, C was used mainly in academic environments, but eventually with the release of

support among computer professionals. Today, C is running under a variety of operating system and

hardware platforms.

traditional C”. The language became more

‘The C Programming Language’

the programming community. The rapid growth of C led to the development of different versions of the

language that were similar but often incompatible. This posed a serious problem for system developers.

Programming in ANSI C2

Java modelled on C

All popular computer languages are dynamic in nature. They continue to improve their power and

the usefulness of the language. The result was the 1999 standard for C. This version is usually referred

to as C99. The history and development of C is illustrated in Fig. 1.1

Fig. 1.1 History of ANSI C

Overview of C 3

Although C99 is an improved version, still many commonly available compilers do not support all of

the new features incorporated in C99. We, therefore, discuss all the new features added by C99 in an

use them wherever possible.

1.2 IMPORTANCE OF C

whose rich set of built-in functions and operators can be used to write any complex program. The C

compiler combines the capabilities of an assembly language with the features of a high-level language

functions are available which can be used for developing programs.

C is highly portable. This means that C programs written for one computer can be run on another

operating system.

Another important feature of C is its ability to extend itself. A C program is basically a collection of

functions that are supported by the C library. We can continuously add our own functions to C library.

1.3 SAMPLE PROGRAM 1: PRINTING A MESSAGE

 main()

 {

 /*…………printing begins………………*/

 printf(“I see, I remember”);

 /*………………printing ends…………………*/

 }

 Fig. 1.2 A program to print one line of text

This program when executed will produce the following output:

 I see, I remember

Programming in ANSI C4

program is main and the execution begins at this line. The main() is a special function used by the

C system to tell the computer where the program starts. Every program must have exactly one main

function. If we use more than one main

beginning of the program.

The empty pair of parentheses immediately following main indicates that the function main has no

arguments (or parameters). The concept of arguments will be discussed in detail later when we discuss

functions (in Chapter 9).

The opening brace “{ main and the closing

end of the program. All the statements between these two braces form the function body. The function

In this case, the function body contains three statements out of which only the printf line is an

executable statement. The lines beginning with /* and ending with */ comment lines. These

are used in a program to enhance its readability and understanding. Comment lines are not executable

statements and therefore anything between /* and *

in the middle of a word”.

Although comments can appear anywhere, they cannot be nested in C. That means, we cannot have

/* = = = =/* = = = = */ = = = = */

is not valid and therefore results in an error.

use them liberally in our programs. They help the programmers and other users in understanding the

various functions and operations of a program and serve as an aid to debugging and testing. We shall

see the use of comment lines more in the examples that follow.

printf() function, the only executable statement of the program.

printf(“I see, I remember”);

printf means that it is a function that

 printf function causes

output will be:

 I see, I remember

Every statement in C should end with a semicolon (;)

mark.

 I see,

 I remember!

This can be achieved by adding another printf function as shown below:

 printf(”I see, \n”);

 printf(“I remember !”);

The information contained between the parentheses is called the argument of the function. This

 printf function is “I see, \n” and the second is “I remember !”. These arguments are

simply strings of characters to be printed out.

Overview of C 5

printf contains a combination of two characters \ and n at the

end of the string. This combination is collectively called the newline character. A newline character

a typewriter. After printing the character comma (,) the presence of the newline character \n causes the

printf statement, then the output will again be a single

line as shown below.

I see, I remember !

and I.

It is also possible to produce two or more lines of output by one printf statement with the use of

newline character at appropriate places. For example, the statement

printf(“I see,\n I remember !”);

will output

I see,

I remember !

while the statement

 printf(“I\n.. see,\n… … … I\n… … … remember !”);

will print out

I

.. see,

… … … I

… … … remember !

 Note Some authors recommend the inclusion of the statement

#include <stdio.h>

for the functions printf and scanf

for more on input and output functions.

a distinction between uppercase and lowercase letters. For example, printf and PRINTF are not the

REMEMBER”.

The above example that printed I see, I remember is one of the simplest programs. Figure 1.3

highlights the general format of such simple programs. All C programs need a main function.

main () Function name

Program statements

End of program

Start of program

Fig. 1.3 Format of simple C programs

Programming in ANSI C6

The main Function

The main is a part of every C program. C permits different forms of main statement. Following forms

are allowed. ∑ main()

 ∑ int main()

 ∑ void main()

 ∑ main(void)

 ∑ void main(void)

 ∑ int main(void)

The empty pair of parentheses indicates that the function has no arguments. This may be explicitly

void

int or void before the word main void means that the function does not return any

information to the operating system and int means that the function returns an integer value to the

operating system. When int

1.4 SAMPLE PROGRAM 2: ADDING TWO NUMBERS

Consider another program, which performs addition on two numbers and displays the result. The

 /* Programm ADDITION line-1 */

 /* Written by EBG line-2 */

 main() /* line-3 */

 { /* line-4 */

 int number; /* line-5 */

 float amount; /* line-6 */

 /* line-7 */

 number = 100; /* line-8 */

 /* line-9 */

 amount = 30.75 + 75.35; /* line-10 */

 printf(“%d\n”,number); /* line-11 */

 printf(“%5.2f”,amount); /* line-12 */

 } /* line13 */

 Fig. 1.4 Program to add two numbers

This program when executed will produce the following output:

100

106.10

Overview of C 7

beginning to give information such as name of the program, author, date, etc. Comment characters are

also used in other lines to indicate line numbers.

The words number and amount are variable names that are used to store numeric data. The

numeric data may be either in integer form or in real form. In C, all variables should be declared to tell

the compiler what the variable names are and what type of data they hold. The variables must be

declared before they are used. In lines 5 and 6, the declarations

 int number;

 float amount;

tell the compiler that number is an integer (int) and amount (

The words such as int and are called the keywords and cannot be used as variable names. A

assigning a data value to it. This is done in lines 8 and 10. In line-8,

an integer value 100 is assigned to the integer variable number and in line-10, the result of addition of

amount. The statements

number = 100;

amount = 30.75 + 75.35;

are called the assignment statements. Every assignment statement must have a semicolon at the end.

The next statement is an output statement that prints the value of number. The print statement

printf(“%d\n”, number);

number should be printed as a decimal integer

The newline character \n causes the next output to appear on a new line.

The last statement of the program

printf(“%5.2f”, amount);

prints out the value of amount % f tells the compiler

that the output must be in

point.

1.5 SAMPLE PROGRAM 3: INTEREST CALCULATION

The program in Fig. 1.5 calculates the value of money at the end of each year of investment, assuming

an interest rate of 11 percent and prints the year, and the corresponding amount, in two columns. The

output is shown in Fig. 1.6 for a period of 10 years with an initial investment of 5000.00. The program

uses the following formula:

In the program, the variable value represents the value of money at the end of the year while amount

represents the value of money at the start of the year. The statement

amount = value ;

current year as the value at start of the next year.

Programming in ANSI C8

 /*—————————— INVESTMENT PROBLEM ——————————*/

 #define PERIOD 10

 #define PRINCIPAL 5000.00

 /*—————————— MAIN PROGRAM BEGINS ——————————*/

 main()

 { /*————————— DECLARATION STATEMENTS ————————*/

 int year;

 float amount, value, inrate;

 /*————————— ASSIGNMENT STATEMENTS —————————*/

 amount = PRINCIPAL;

 inrate = 0.11;

 year = 0;

 /*————————— COMPUTATION STATEMENTS —————————*/

 /*——————— COMPUTATION USING While LOOP ————————*/

 while(year <= PERIOD)

 { printf(“%2d %8.2f\n”,year, amount);

 value = amount + inrate * amount;

 year = year + 1;

 amount = value;

 }

 /*——————————— while LOOP ENDS ——————————*/

 }

 /*———————————— PROGRAM ENDS ——————————*/

 Fig. 1.5 Program for investment problem

 Let us consider the new features introduced in this program. The second and third lines begin with

 instructions. A symbolic constant for use in the program.

Whenever a symbolic name is encountered, the compiler substitutes the value associated with the

 PERIOD and PRINCIPAL and assigned values 10 and 5000.00

respectively. These values remain constant throughout the execution of the program.

 0 5000.00

 1 5550.00

 2 6160.50

 3 6838.15

 4 7590.35

 5 8425.29

 6 9352.07

 7 10380.00

 8 11522.69

 9 12790.00

 10 14197.11

Fig. 1.6 Output of the investment program

Overview of C 9

The Directive

A is a preprocessor compiler directive and not a statement. Therefore lines should

easily distinguished from lowercase variable names. instructions are usually placed at the

beginning before the main()

program by using an assignment statement. For example, the statement

PRINCIPAL = 10000.00;

is illegal.

The declaration section declares year as integer and amount, value and inrate

as

float amount;

float value;

float inrate;

When two or more variables are declared in one statement, they are separated by a comma.

All computations and printing are accomplished in a while loop. while is a mechanism for evaluating

repeatedly a statement or a group of statements. In this case as long as the value of year is less than or

PERIOD, the four statements that follow while

statements are grouped by braces. We exit the loop when year becomes greater than PERIOD. The

concept and types of loops are discussed in Chapter 6.

in Chapter 3.

1.6 SAMPLE PROGRAM 4: USE OF SUBROUTINES

printf function that has been provided for us by the C system. The program

Figure 1.7 presents a very simple program that uses a mul () function. The program will print the

following output.

 Multiplication of 5 and 10 is 50

 /*————————— PROGRAM USING FUNCTION —————————*/

 int mul (int a, int b); /*——— DECLARATION ——————*/

 /*—————————— MAIN PROGRAM BEGINS ——————————*/

 main ()

 {

Programming in ANSI C10

 int a, b, c;

 a = 5;

 b = 10;

 c = mul (a,b);

 printf (“multiplication of %d and %d is %d”,a,b,c);

 }

 /* —————————— MAIN PROGRAM ENDS

 MUL() FUNCTION STARTS —————————————*/

 int mul (int x, int y)

 int p;

 {

 p = x*y;

 return(p);

 }

 /* —————————————— MUL () FUNCTION ENDS ————————————*/

 Fig. 1.7

The mul () function multiplies the values of x and y and the result is returned to the main () function

when it is called in the statement

 c = mul (a, b);

The mul () has two arguments x and y that are declared as integers. The values of a and b are

passed on to x and y respectively when the function mul ()

considered in detail in chapter 9.

1.7 SAMPLE PROGRAM 5: USE OF MATH FUNCTIONS

We often use standard mathematical functions such as cos, sin, exp, etc. We shall see now the use of

part of C math library. If we want to use any of these mathematical functions, we must add an #include

#include <math.h>

math.h

headings.

 /*——————— PROGRAM USING COSINE FUNCTION ——————— */

 #include <math.h>

 #define PI 3.1416

 #define MAX 180

Overview of C 11

 main ()

 {

 int angle;

 float x,y;

 angle = 0;

 printf(“ Angle Cos(angle)\n\n”);

 while(angle <= MAX)

 {

 x = (PI/MAX)*angle;

 y = cos(x);

 printf(“%15d %13.4f\n”, angle, y);

 angle = angle + 10;

 }

 }

 Output

 Angle Cos(angle)

 0 1.0000

 10 0.9848

 20 0.9397

 30 0.8660

 40 0.7660

 50 0.6428

 60 0.5000

 70 0.3420

 80 0.1736

 90 –0.0000

 100 –0.1737

 110 –0.3420

 120 –0.5000

 130 –0.6428

 140 –0.7660

 150 –0.8660

 160 –0.9397

 170 –0.9848

 180 –1.0000

 Fig. 1.8 Program using a math function

Another #include

#include <stdio.h>

stdio.h refers to the standard

Programming in ANSI C12

The #include Directive

As mentioned earlier, C

C library. Library functions are grouped category-

. If we want to access the functions stored in

This is achieved by using the preprocessor directive #include as follows:

#include<filename>

directives are placed at the beginning of a program.

1.8 BASIC STRUCTURE OF C PROGRAMS

called functions. A function is a subroutine that may include one or more statements designed to perform

a

may contain one or more sections as shown in Fig. 1.9.

Fig. 1.9 An overview of a C program

Overview of C 13

The documentation section consists of a set of comment lines giving the name of the program,

symbolic constants.

global

variables and are declared in the global declaration section that is outside of all the functions. This

Every C program must have one main() function section. This section contains two parts, declaration

part and executable part. The declaration part declares all the variables used in the executable part.

There is at least one statement in the executable part. These two parts must appear between the

opening and the closing braces. The program execution begins at the opening brace and ends at the

closing brace. The closing brace of the main function section is the logical end of the program. All

statements in the declaration and executable parts end with a semicolon(;).

main function.

main function, although they may

appear in any order.

All sections, except the main

1.9 PROGRAMMING STYLE

free-form_language. That

is, the C compiler does not care, where on the line we begin typing. While this may be a licence for bad

programming, we should try to use this fact to our advantage in developing readable programs. Although

several alternative styles are possible, we should select one style and use it with total consistency.

First of all, we must develop the habit of writing programs in lowercase letters. C program statements

the braces are aligned and the statements are indented in the program of Fig. 1.5.

 a = b;

 x = y + 1;

 z = a + x;

can be written on one line as

a = b; x = y+1; z = a+x;

The program

 main()

 {

 printf(“hello C”);

 }

 main() {printf(“Hello C”)};

Programming in ANSI C14

comments not only increase the readability but also help to understand the program logic. This is very

important for debugging and testing the program.

 1.10 EXECUTING A ‘C’ PROGRAM

Executing a program written in C involves a series of steps. These are:

 1. Creating the program;

Figure 1.10 illustrates the process of creating, compiling and executing a C program. Although these

steps remain the same irrespective of the system commands for implementing the

steps and conventions for naming may differ on different systems.

output operations are channeled through the operating system. The operating system, which is an

interface between the hardware and the user, handles the execution of user programs.

both these operating systems in the following sections.

1.11 UNIX SYSTEM

Creating the Program

followed by a dot and a letter c

hello.c

program.c

ebg1.c

 text editor, either ed or vi. The command for calling the editor

ed filename

to receive the new program. Any corrections in the program are done under the editor. (The name of

source program, since it represents the

original form of the program.

Overview of C 15

Compiling and Linking

ebg1.c.

cc ebg1.c

The source program instructions are now translated into a form that is suitable for execution by the

computer. The translation is done after examining each instruction for its correctness. If everything is

name ebg1.o object code.

program. For example, if the program is using exp()

System Ready

Program Code

C Compiler

System Library

Source Program

Object Code

No Errors

No

Executable Object Code

Yes

Logic Error

Enter Program

Edit
Source Program

Compile
Source Program

Link with
System Library

Execute
Object Code

Input Data

CORRECT OUTPUT

Stop

Syntax
Errors ?

Logic and Data
Errors ?

Data Error

Fig. 1.10 Process of compiling and runnig a C program

Programming in ANSI C16

be brought from the math library

is automatically done (if no errors are detected) when the cc command is used.

syntax and semantics of the language are discovered, they are listed out and

the compilation process ends right there. The errors should be corrected in the source program with the

help of the editor and the compilation is done again.

executable object code and is stored automatically in

a.out.

cc filename - lm

Executing the Program

a.out

program does not produce the desired results. Perhaps, something is wrong with the program logic or

data. Then it would be necessary to correct the source program or the data. In case the source program

Creating Your Own Executable File

a.out. When we compile another program, this

 mv a.out name

We may also achieve this by specifying an option in the cc command as follows:

cc –o name source-file

a.out from being

destroyed.

Multiple Source Files

cc command.

cc filename-1.c …. filename-n.c

filename-i.o

a.out as shown in Fig. 1.11.

cc –c mod1.c

cc –c mod2.c

mod1.c and mod2.c mod1.o and mod2.o. They can be

 cc mod1.o mod2.o

Overview of C 17

cc mod1.c mod2.o

Only mod1.c

to be used along with the program to be compiled.

1.12 MS-DOS SYSTEM

program.c, pay.c, etc. Then the command

MSC pay.c

pay.c and generate the

object code. pay.obj. In case any language errors are

found, the compilation is not completed. The program should then be corrected and compiled again.

LINK pay.obj

which generates the executable code pay.exe

pay

would execute the program and give the results.

Just Remember

 ∑ main() main() is illegal). The place

main is where the program execution begins.

 ∑ The execution of a function begins at the opening brace of the function and ends at the

corresponding closing brace.

 ∑

names and output strings.

 ∑ All the words in a program line must be separated from each other by at least one space, or a tab,

 ∑ Every program statement in a C language must end with a semicolon.

 ∑ All variables must be declared for their types before they are used in the program.

.C .C

a.out

.C

Compiler and
preprocessor

.O .O .O Library

Linker

Fig. 1.11

Programming in ANSI C18

 ∑ #include directive when the program refers to

 ∑ Compiler directives such as and include are special instructions to the compiler to help it

compile a program. They do not end with a semicolon.

 ∑

 ∑

closing brace.

 ∑ C is a free-form language and therefore a proper form of indentation of various sections would

improve legibility of the program.

 ∑

in proper places increases readability and understandability of the program and helps users in

Review Questions

true or false.

 (a) Every line in a C program should end with a semicolon.

 (d) main() is where the program begins its execution.

 (e) A line in a program may have more than one statement.

 (f) A printf statement can generate only one line of output.

 (g) The closing brace of the main() in a program is the logical end of the program.

stdio.h is to store the source code of a program.

true?

 (b) Only one function may be named main().

 1.3 Which of the following statements about comments are false?

 (b) Comments serve as internal documentation for programmers.

 (c) A comment can be inserted in the middle of a statement.

 (d) In C, we can have comments inside comments.

 (a) Every program statement in a C program must end with a ___________

 (b) The ____________ Function is used to display the output on the screen.

on the screen.

 1.5 Remove the semicolon at the end of the printf

it. What is the output?

Overview of C 19

message?

 Year Amount

 1 5500.00

 1.8 Find errors, if any, in the following program:

 /* A simple program

 int main()

 {

 /* Does nothing */

 }

 1.9 Find errors, if any, in the following program:

 #include (stdio.h)

 void main(void)

 {

 print(“Hello C”);

 }

 1.10 Find errors, if any, in the following program:

 Include <math.h>

 main { }

 (

 FLOAT X;

 X = 2.5;

 Y = exp(x);

 Print(x,y);

)

 1.11 Why and when do we use the directive?

 #include directive?

 1.13 What does void main(void) mean?

 (a) main() and void main(void)

 (b) int main() and void main()

 1.15 Why do we need to use comments in programs?

Programming in ANSI C20

Programming Exercises

 1.1 Write a program that will print your mailing address in the following form:

 Third line : City, Pin code

 value and assume a suitable value for radius.

 1.6 Write a program to output the following multiplication table:

 5 ¥ 1 = 5

 5 ¥

 5 ¥ 3 = 15

 ∑ ∑

 ∑ ∑

 5 ¥ 10 = 50

difference in the following form:

 1.8 Given the values of three variables a, b and c, write a program to compute and display the value

of x, where

 x =
a

b c-

 Execute your program for the following values:

 (b) a = 300, b = 70, c = 70

 Comment on the output in each case.

Overview of C 21

 1.9 Relationship between Celsius and Fahrenheit is governed by the formula

 F =
9

5
32

C
+

 Write a program to convert the temperature

 (a) from Celsius to Fahrenheit and

 (b) from Fahrenheit to Celsius.

 1.10 Area of a triangle is given by the formula

 A = S(S-a) (S-b) (S-c)

area of the triangle given the values of a, b and c.

1
, y

1
) and (x , y) is governed by the formula

 = (x – x
1
) – y

1
)

of the circle. Write a program to compute the area of the circle.

 for a = 5, b = 8 and c = 18.

 1.15 Write a program to display the following simple arithmetic calculator

 x = y =

 sum

 Product =

2 CONSTANTS, VARIABLES,

AND DATA TYPES

Key Terms
2.1 INTRODUCTION

data

information.

program.

syntax rules

grammar

2.2 CHARACTER SET

Trigraph Characters

Constants, Variables, and Data Types 23

Table 2.1 C Character Set

Letters Digits

Special Characters

White Spaces

Programming in ANSI C24

Table 2.2 ANSI C Trigraph Sequences

Trigraph sequence Translation

2.3 C TOKENS

tokens

Keywords

float
while

+ –
* ,

"ABC"
"year"

–15.5
100

Identifiers

main
amount

[]
{ }

Special Symbols

C TOKENS

StringsConstants Operators

Fig. 2.1 C tokens and examples

 2.4 KEYWORDS AND IDENTIFIERS

keyword

Constants, Variables, and Data Types 25

 Note C99 adds some more keywords. See the Appendix “C99 Features”.

Table 2.3 ANSI C Keyword

auto double int struct

 2.5 CONSTANTS

Integer Constants

integer decimal

octal hexadecimal

Programming in ANSI C26

 Note

octal

hexadecimal

Program 2.1

Fig. 2.2 Basic types of C constants

Constants, Variables, and Data Types 27

 Program

 main()

 {

 printf(“Integer values\n\n”);

 printf(“%d %d %d\n”, 32767,32767+1,32767+10);

 printf(“\n”);

 printf(“Long integer values\n\n”);

 printf(“%ld %ld %ld\n”, 32767L,32767L+1L,32767L+10L);

 }

 Output

 Integer values

 32767 -32768 -32759

 Long integer values

 32767 32768 3777

Fig. 2.3 Representation of integer constants on 16-bit machine

Real Constants

real

decimal notation

exponential notation

mantissa e exponent

 mantissa decimal notation exponent

plus minus sign e

Programming in ANSI C28

Table 2.4 Examples of Numeric Constants

Constant Valid? Remarks

Single Character Constants

single

number 5.

 printf(“%d”, ‘a’);

 printf(“%c”, ‘97’);

String Constants

double

Constants, Variables, and Data Types 29

Backslash Character Constants

escape sequences.

Table 2.5 Backslash Character Constants

Constant Meaning

 2.6 VARIABLES

variable

 amount

Programming in ANSI C30

 Total total

TOTAL.

Table 2.6 Examples of Variable Names

Variable name Valid ? Remark

avg_height and avg_weight

ht_average and wt_average

2.7 DATA TYPES

data types.

Constants, Variables, and Data Types 31

(int), char

double) void.

long int long double

 Note C99 adds three more data types, namely _Bool Complex, and _Imaginary. See the

 Appendix “C99Fatures”.

PRIMARY DATA TYPES

Integral Type

signed

int

short int

long int

float double Long double
void

unsigned type

Floating point Type

unsigned int

char

Integer Character

unsigned short int

signed char

unsigned long int

unsigned char

Fig. 2.4 Primary data types in C

Table 2.7 Size and Range of Basic Data Types on 16-bit Machines

Data type Range of values

int

Programming in ANSI C32

Integer Types

short int, int, long

int, signed unsigned

short int

int

 long unsigned signed

 Note C99 allows long long integer types. See the Appendix “C99 Features”.

Table 2.8 Size and Range of Data Types on a 16-bit Machine

Type Range

short int

long int

int

Fig. 2.5 Integer types

Constants, Variables, and Data Types 33

Floating Point Types

double

double

double precision

long double

Void Types

 void

 void

Character Types

character(char)

signed unsigned

unsigned chars signed chars

2.8 DECLARATION OF VARIABLES

Primary Type Declaration

data-type v1,v2,....vn ;

 int count;

 int number, total;

 double ratio;

float

long double

double

Fig. 2.6 Floating-point types

Programming in ANSI C34

int double

Table 2.9 Data Types and Their Keywords

Data type Keyword equivalent

main()

main

 Note C99 permits declaration of variables at any point within a function or block, prior to

 their use.

 main() /*.........Program Name........................ */

 {

 /*................Declaration.......................*/

 float x, y;

 int code;

Constants, Variables, and Data Types 35

 short int count;

 long int amount;

 double deviation;

 unsigned n;

 char c;

 /*...............Computation....................... */

 } /*.............Program ends........................*/

 Fig. 2.7 Declaration of variables

short, long, or unsigned

int.

unsigned char.

Default values of Constants

int

–

–

double

long double

long double

–

Programming in ANSI C36

t type ;

type

typedef

typedef int units;

typedef float marks;

units int marks

units batch1, batch2;

marks name1[50], name2[50];

int

typedef

e value1, value2, ... valuen};

enumeration constants

enum identifier v1, v2, ... vn;

value1, value2, valuen.

v1 = value3;

v5 = value1;

enum day {Monday,Tuesday, ... Sunday};

enum day week_st, week_end;

week_st = Monday;

week_end = Friday;

if(week_st == Tuesday)

week_end = Saturday;

enum day {Monday = 1, Tuesday, ... Sunday};

Constants, Variables, and Data Types 37

enum day {Monday, ... Sunday} week_st, week_end;

2.9 DECLARATION OF STORAGE CLASS

data type storage class

 /* Example of storage classes */

 int m;

 main()

 {

 int i;

 float balance;

 function1();

 }

 function1()

 {

 int i;

 float sum;

 }

 m main global

external

i balance sum local

i

i

auto, register, static

extern

long unsigned)

auto int count;

register char ch;

static int x;

extern long total;

Programming in ANSI C38

extern auto

Table 2.10 Storage Classes and Their Meaning

Storage class Meaning

auto Default is auto.

static

extern

register

2.10 ASSIGNING VALUES TO VARIABLES

 value = amount + inrate * amount;

 while (year <= PERIOD)

 {

 year = year + 1;

 }

inrate

amount amount

 amount value

target variable

must

year

PERIOD while

Assignment Statement

variable_name = constant; initial_value = 0;

 final_value = 100;

 balance = 75.84;

 yes = ‘x’;

Constants, Variables, and Data Types 39

initial_value = 0; final_value = 100;

year = year + 1;

year year

data-type variable_name = constant; int final_value = 100;

 char yes = ‘x’;

 double balance = 75.84;

initialization initialization p = q = s = 0;

 x = y = z = MAX;

p, q, s x, y,

z MAX. MAX

default.

Program 2.2

 x p

x x

x

m int

int

k unsigned

long int n

y

printf

double

Programming in ANSI C40

 Program

 main()

 {

 /*..........DECLARATIONS............................*/

 float x, p ;

 double y, q ;

 unsigned k ;

 /*..........DECLARATIONS AND ASSIGNMENTS............*/

 int m = 54321 ;

 long int n = 1234567890 ;

 /*..........ASSIGNMENTS.............................*/

 x = 1.234567890000 ;

 y = 9.87654321 ;

 k = 54321 ;

 p = q = 1.0 ;

 /*..........PRINTING................................*/

 printf(“m = %d\n”, m) ;

 printf(“n = %ld\n”, n) ;

 printf(“x = %.12lf\n”, x) ;

 printf(“x = %f\n”, x) ;

 printf(“y = %.12lf\n”,y) ;

 printf(“y = %lf\n”, y) ;

 printf(“k = %u p = %f q = %.12lf\n”, k, p, q) ;

 }

 Output

 m = -11215

 n = 1234567890

 x = 1.234567880630

 x = 1.234568

 y = 9.876543210000

 y = 9.876543

 k = 54321 p = 1.00000 q = 1.000000000000

 Fig. 2.8 Examples of assignments

Reading Data from Keyboard

scanf

printf

scanf

scanf(“control string”, &variable1,&variable2,....);

Constants, Variables, and Data Types 41

&

address

scanf(“%d”, &number);

 number

scanf

number.

Program 2.3 scanf

printf,

 Program
 main()

 {

 int number;

 printf(“Enter an integer number\n”);

 scanf (“%d”, &number);

 if (number < 100)

 printf(“Your number is smaller than 100\n\n”);

 else

 printf(“Your number contains more than two digits\n”);

 }

 Output
 Enter an integer number

 54

 Your number is smaller than 100

 Enter an integer number

 108

 Your number contains more than two digits

 Fig. 2.9 Use of function for interactive computing

Programming in ANSI C42

scanf

 scanf(“Enter a number %d”,&number);

scanf

if...else

Program 2.4
scanf

 Program

 main()

 {

 int year, period ;

 float amount, inrate, value ;

 printf(“Input amount, interest rate, and period\n\n”) ;

 scanf (“%f %f %d”, &amount, &inrate, &period) ;

 printf(“\n”) ;

 year = 1 ;

 while(year <= period)

 {

 value = amount + inrate * amount ;

 printf(“%2d Rs %8.2f\n”, year, value) ;

 amount = value ;

 year = year + 1 ;

 }

 }

 Output

 Input amount, interest rate, and period

 10000 0.14 5

 1 Rs 11400.00

 2 Rs 12996.00

 3 Rs 14815.44

 4 Rs 16889.60

 5 Rs 19254.15

Constants, Variables, and Data Types 43

 Input amount, interest rate, and period

 20000 0.12 7

 1 Rs 22400.00

 2 Rs 25088.00

 3 Rs 28098.56

 4 Rs 31470.39

 5 Rs 35246.84

 6 Rs 39476.46

 7 Rs 44213.63

 Fig. 2.10 Interactive investment program

amount, inrate, period,

scanf

order type

2.11 DEFINING SYMBOLIC CONSTANTS

“pi”.

Understandability

Programming in ANSI C44

symbolic name

STRENGTH PASS_MARK

STRENGTH PASS_MARK

#

#define STRENGTH 100

#define PASS_MARK 50

#define MAX 200

#define PI 3.14159

‘#’

‘#’

symbolic name symbolic name

constant.

symbolic name

anywhere

preprocessor

Table 2.11

Statement Validity Remark

Constants, Variables, and Data Types 45

2.12 DECLARING A VARIABLE AS CONSTANT

const

const int class_size = 40;

const

int class_size

2.13 DECLARING A VARIABLE AS VOLATILE

volatile

volatile int date;

date

volatile

volatile

const volatile

 volatile const int location = 100;

 Note restrict See the Appendix “C99 Features”

2.14 OVERFLOW AND UNDERFLOW OF DATA

Just Remember

∑

∑

Programming in ANSI C46

∑

∑

∑

∑

∑

∑ int long unsigned

∑ double long double

∑

∑

∑

∑

∑

const

∑

∑

∑ #

∑

∑

∑

Case Studies

 1. Calculation of Average of Numbers

 Program

 #define N 10 /* SYMBOLIC CONSTANT */

 main()

 {

 int count ; /* DECLARATION OF */

 float sum, average, number ; /* VARIABLES */

 sum = 0 ; /* INITIALIZATION */

 count = 0 ; /* OF VARIABLES */

 while(count < N)

 {

 scanf(“%f”, &number) ;

Constants, Variables, and Data Types 47

 sum = sum + number ;

 count = count + 1 ;

 }

 average = sum/N ;

 printf(“N = %d Sum = %f”, N, sum);

 printf(“ Average = %f”, average);

 }

 Output

 1

 2.3

 4.67

 1.42

 7

 3.67

 4.08

 2.2

 4.25

 8.21

 N = 10 Sum = 38.799999 Average = 3.880

 Fig. 2.11 Average of N numbers

 number

 N

while

count while

 2. Temperature Conversion Problem

C =
F - 32

1 8.

 Program

 #define F_LOW 0 /* — — — — — — — — — — — — — — — */

 #define F_MAX 250 /* SYMBOLIC CONSTANTS */

 #define STEP 25 /* — — — — — — — — — — — — — — */

 main()

Programming in ANSI C48

 {

 typedef float REAL ; /* TYPE DEFINITION */

 REAL fahrenheit, celsius ; /* DECLARATION */

 fahrenheit = F_LOW ; /* INITIALIZATION */

 printf(“Fahrenheit Celsius\n\n”) ;

 while(fahrenheit <= F_MAX)

 {

 celsius = (fahrenheit - 32.0) / 1.8 ;
 printf(“ %5.1f %7.2f\n”, fahrenheit, celsius);

 fahrenheit = fahrenheit + STEP ;

 }

 }

 Output

 Fahrenheit Celsius

 0.0 -17.78

 25.0 -3.89

 50.0 10.00

 75.0 23.89

 100.0 37.78

 125.0 51.67

 150.0 65.56

 175.0 79.44

 200.0 93.33

 225.0 107.22

 250.0 121.11

 Fig. 2.12 Temperature conversion—fahrenheit-celsius

REAL

 fahrenheit celsius.

printf

Review Questions

 true false.

Constants, Variables, and Data Types 49

name Name

void

static

scanf

int

const volatile.

¥

 Int x;

 float letter,DIGIT;

Programming in ANSI C50

 double = p,q

 exponent alpha,beta;

 m,n,z: INTEGER

 short char c;

 long int m; count;

 long float temp;

 int x, y = 10;

 char z = ‘a’;

 x = y + z;

 #define PI 3.14159

 main()

 {

 int R,C; /* R-Radius of circle

 float perimeter; /* Circumference of circle */

 float area; /* Area of circle */

 C = PI

 R = 5;

 Perimeter = 2.0 * C *R;

 Area = C*R*R;

 printf(“%f”, “%d”,&perimeter,&area)

 }

Programming Exercises

Constants, Variables, and Data Types 51

scanf

scanf

typedef

3 OPERATORS AND

EXPRESSIONS

Key Terms

Operator I Expression I Integer expression I Real arithmetic I Relational operators I Logical operators I

Assignment operators I Bitwise operators I Arithmetic operations

3.1 INTRODUCTION

C supports a rich set of built-in operators. We have already used several of them, such as =, +, –, *,

& and <. An operator is a symbol that tells the computer to perform certain mathematical or logical

manipulations. Operators are used in programs to manipulate data and variables. They usually form a

part of the mathematical or logical expressions.

 1. Arithmetic operators

 2. Relational operators

 3. Logical operators

 4. Assignment operators

 5. Increment and decrement operators

 6. Conditional operators

 7. Bitwise operators

 8. Special operators

An expression is a sequence of operands and operators that reduces to a single value. For example,

 10 + 15

is an expression whose value is 25. The value can be any type other than void.

3.2 ARITHMETIC OPERATORS

C provides all the basic arithmetic operators. They are listed in Table 3.1. The operators +, –, *, and / all

work the same way as they do in other languages. These can operate on any built-in data type allowed

in C. The unary minus operator, in effect, multiplies its single operand by –1. Therefore, a number

preceded by a minus sign changes its sign.

Operators and Expressions 53

Table 3.1 Arithmetic Operators

Operator Meaning

+ Addition or unary plus

– Subtraction or unary minus

* Multiplication

/ Division

% Modulo division

Integer division truncates any fractional part. The modulo division operation produces the remainder

 a – b a + b

 a * b a / b

 a % b –a * b

Here a and b are variables and are known as operands. The modulo division operator % cannot be

exponentiation. Older versions of

Integer Arithmetic

When both the operands in a single arithmetic expression such as a+b are integers, the expression is

called an integer expression, and the operation is called integer arithmetic. Integer arithmetic always

yields an integer value. The largest integer value depends on the machine, as pointed out earlier. In the

above examples, if a and b are integers, then for a = 14 and b

 a – b = 10

 a + b = 18

 a * b = 56

 a / b = 3 (decimal part truncated)

 a % b = 2 (remainder of division)

During integer division, if both the operands are of the same sign, the result is truncated towards

zero. If one of them is negative, the direction of trunction is implementation dependent. That is,

6/7 = 0 and –6/–7 = 0

but –6/7 may be zero or –1. (Machine dependent)

dividend). That is

 –14 % 3 = –2

 –14 % –3 = –2

 14 % –3 = 2

Program 3.1
The program in Fig. 3.1 shows the use of integer arithmetic to convert a

given number of days into months and days.

Programming in ANSI C54

 Program

 main ()

 {

 int months, days ;

 printf(“Enter days\n”) ;

 scanf(“%d”, &days) ;

 months = days / 30 ;

 days = days % 30 ;

 printf(“Months = %d Days = %d”, months, days) ;

 }

 Output

 Enter days

 265

 Months = 8 Days = 25

 Enter days

 364

 Months = 12 Days = 4

 Enter days

 45

 Months = 1 Days = 15

 Fig. 3.1 Illustration of integer arithmetic

The variables months and days are declared as integers. Therefore, the statement

months = days/30;

truncates the decimal part and assigns the integer part to months. Similarly, the statement

days = days%30;

assigns the remainder part of the division to days. Thus the given number of days is converted into an

equivalent number of months and days and the result is printed as shown in the output.

Real Arithmetic

An arithmetic operation involving only real operands is called real arithmetic. A real operand may assume

x, y, and z are

 x = 6.0/7.0 = 0.857143

 y = 1.0/3.0 = 0.333333

 z = –2.0/3.0 = –0.666667

The operator % cannot be used with real operands.

Operators and Expressions 55

When one of the operands is real and the other is integer, the expression is called a mixed-mode

arithmetic expression. If either operand is of the real type, then only the real operation is performed and

the result is always a real number. Thus

 15/10.0 = 1.5

whereas

 15/10 = 1

More about mixed operations will be discussed later when we deal with the evaluation of expressions.

3.3 RELATIONAL OPERATORS

We often compare two quantities and depending on their relation, take certain decisions. For example,

we may compare the age of two persons, or the price of two items, and so on. These comparisons can

be done with the help of relational operators. We have already used the symbol ‘<‘, meaning ‘less than’.

An expression such as

a < b or 1 < 20

containing a relational operator is termed as a relational expression. The value of a relational expression

is either one or zero. It is one true and zero if the relation is false. For example

10 < 20 is true

but

20 < 10 is false

C supports six relational operators in all. These operators and their meanings are shown in Table 3.2.

Table 3.2 Relational Operators

Operator Meaning

< is less than

<= is less than or equal to

> is greater than

>= is greater than or equal to

== is equal to

!= is not equal to

ae-1 relational operator ae-2

ae-1 and ae-2 are arithmetic expressions, which may be simple constants, variables or combination of

4.5 <= 10 TRUE

4.5 < –10 FALSE

Programming in ANSI C56

–35 >= 0 FALSE

10 < 7+5 TRUE

a+b = c+d TRUE only if the sum of values of a and b is equal to the sum of values of c and d.

When arithmetic expressions are used on either side of a relational operator, the arithmetic

higher priority over relational operators.

Relational expressions are used in decision statements such as if and while to decide the course

of action of a running program. We have already used the while statement in Chapter 1. Decision

statements are discussed in detail in Chapters 5 and 6.

Among the six relational operators, each one is a complement of another operator.

 > is complement of < =

 < is complement of > =

 = = is complement of ! =

We can simplify an expression involving the not and the less than operators using the complements

 !(x < y) x > = y

 !(x > y) x < = y

 !(x ! = y) x = = y

 !(x < = y) x > y

 !(x > = y) x < y

 !(x == y) x ! = y

3.4 LOGICAL OPERATORS

In addition to the relational operators, C has the following three logical operators.

 || meaning logical OR

The logical operators && and || are used when we want to test more than one condition and make

a > b && x == 10

An expression of this kind, which combines two or more relational expressions, is termed as a

logical expression or a compound relational expression. Like the simple relational expressions, a logical

expression also yields a value of one or zero, according to the truth table shown in Table 3.3. The logical

expression given above is true only if a > b is true and x == 10 is true. If either (or both) of them are

false, the expression is false.

Operators and Expressions 57

Table 3.3 Truth Table

op-1 op-2 Value of the expression

op-1 && op-2 op-1 || op-2

1 1

0 0 1

0 0 1

0 0 0 0

 1. if (age > 55 && salary < 1000)

 2. if (number < 0 || number > 100)

We shall see more of them when we discuss decision statements.

 Note Relative precedence of the relational and logical operators is as follows:

 Highest !

 > >= < <=

 == !=

 &&

 Lowest ||

It is important to remember this when we use these operators in compound expressions.

3.5 ASSIGNMENT OPERATORS

Assignment operators are used to assign the result of an expression to a variable. We have seen the

usual assignment operator, ‘=’. In addition, C has a set of ‘shorthand ’ assignment operators of the form

v op= exp;

Where v is a variable, exp is an expression and op is a C binary arithmetic operator. The operator =

is known as the shorthand assignment operator.

The assignment statement

v op= exp;

is equivalent to

v = v op (exp);

with v evaluated only once. Consider an example

x += y+1;

This is same as the statement

x = x + (y+1);

The shorthand operator += means ‘add y+1 to x’ or ‘increment x by y+1’. For y = 2, the above

statement becomes

x += 3;

Programming in ANSI C58

and when this statement is executed, 3 is added to x. If the old value of x is, say 5, then the new value

of x is 8. Some of the commonly used shorthand assignment operators are illustrated in Table 3.4.

Table 3.4 Shorthand Assignment Operators

Statement with simple

assignment operator

Statement with

shorthand operator

a = a + 1 a += 1

a = a – 1 a –= 1

a = a * (n+1) a *= n+1

a = a / (n+1) a /= n+1

a = a % b a %= b

 1. What appears on the left-hand side need not be repeated and therefore it becomes easier to

write.

 2. The statement is more concise and easier to read.

These advantages may be appreciated if we consider a slightly more involved statement like

 value(5*j–2) = value(5*j–2) + delta;

value(5*j–2) += delta;

–2 is evaluated

only once.

Program 3.2
of the shorthand operator *= .

The program attempts to print a sequence of squares of numbers starting from 2. The statement

a *= a;

which is identical to

a = a*a;

replaces the current value of a by its square. When the value of a becomes equal or greater than N

(=100) the while

 Program

 #define N 100

 #define A 2

 main()

 {

 int a;

 a = A;

Operators and Expressions 59

 while(a < N)

 {

 printf(“%d\n”, a);

 a *= a;

 }

 }

 Output

 2

 4

 16

 Fig. 3.2 Use of shorthand operator *=

3.6 INCREMENT AND DECREMENT OPERATORS

C allows two very useful operators not generally found in other languages. These are the increment and

++ and — –

The operator ++ adds 1 to the operand, while – – subtracts 1. Both are unary operators and takes the

++m; or m++;

– —m; or m– —;

++m; is equivalent to m = m+1; (or m += 1;)

– —m; is equivalent to m = m–1; (or m –= 1;)

We use the increment and decrement statements in and while loops extensively.

While ++m and m++ mean the same thing when they form statements independently, they behave

differently when they are used in expressions on the right-hand side of an assignment statement.

m = 5;

y = ++m;

In this case, the value of y and m would be 6. Suppose, if we rewrite the above statements as

m = 5;

y = m++;

then, the value of y would be 5 and m would be 6. A

to the variable on left and then increments the operand.

Similar is the case, when we use ++ (or – –) in subscripted variables. That is, the statement

a[i++] = 10;

is equivalent to

a[i] = 10;

i = i+1;

Programming in ANSI C60

m = n++ –j+10;

Old value of n is used in evaluating the expression. n is incremented after the evaluation. Some

compilers require a space on either side of n++ or ++n.

 ∑ Increment and decrement operators are unary operators and they require variable as their

operands.

 ∑
using the original value of the variable and then the variable is incremented (or decremented) by

one.

 ∑

 ∑ The precedence and associatively of ++ and – – operators are the same as those of unary + and

unary –.

3.7 CONDITIONAL OPERATOR

exp1 ? exp2 : exp3

where exp1, exp2, and exp3 are expressions.

 exp1

exp2 is evaluated and becomes the value of the expression. If exp1 is false, exp3 is evaluated and its

exp2 or exp3)

is evaluated. For example, consider the following statements.

 a = 10;

 b = 15;

 x = (a > b) ? a : b;

In this example, x will be assigned the value of b. This can be achieved using the if..else statements

 if (a > b)

 x = a;

 else

 x = b;

 3.8 BITWISE OPERATORS

C has a distinction of supporting special operators known as bitwise operators for manipulation of data

at bit level. These operators are used for testing the bits, or shifting them right or left. Bitwise operators

may not be applied to or . Table 3.5 lists the bitwise operators and their meanings. They are

discussed in detail in Appendix I.

Operators and Expressions 61

Table 3.5 Bitwise Operators

Operator Meaning

&

| bitwise OR

^ bitwise exclusive OR

<< shift left

>> shift right

3.9 SPECIAL OPERATORS

C supports some special operators of interest such as comma operator, operator, pointer

operators (& and *) and member selection operators (. and –>). The comma and operators are

discussed in this section while the pointer operators are discussed in Chapter 11. Member selection

operators (# and ##). They will be discussed in Chapter 14.

The comma operator can be used to link the related expressions together. A comma-linked list of

expressions are evaluated left to right and the value of right-most expression is the value of the combined

expression. For example, the statement

value = (x = 10, y = 5, x+y);

x, then assigns 5 to y value. Since

comma operator has the lowest precedence of all operators, the parentheses are necessary. Some

In

for (n = 1, m = 10, n <=m; n++, m++)

In while

while (c = getchar(), c != ‘10’)

t = x, x = y, y = t;

The is a compile time operator and, when used with an operand, it returns the number of bytes

(sum);

 n = (long int);

 k = (235L);

The operator is normally used to determine the lengths of arrays and structures when their

sizes are not known to the programmer. It is also used to allocate memory space dynamically to variables

during execution of a program.

Programming in ANSI C62

Program 3.3
In Fig. 3.3, the program employs different kinds of operators. The results of

their evaluation are also shown for comparison.

++ works when used in an expression. In the statement

c = ++a – b;

new value of a (= 16) is used thus giving the value 6 to c. That is, a is incremented by 1 before it is used

in the expression. However, in the statement

d = b++ + a;

the old value of b (=10) is used in the expression. Here, b is incremented by 1 after it is used in the

expression.

We can print the character % by placing it immediately after another % character in the control string.

This is illustrated by the statement

printf(“a%%b = %d\n”, a%b);

The program also illustrates that the expression

c > d ? 1 : 0

assumes the value 0 when c is less than d and 1 when c is greater than d.

 Program

 main()

 {

 int a, b, c, d;

 a = 15;

 b = 10;

 c = ++a - b;

 printf(“a = %d b = %d c = %d\n”,a, b, c);

 d = b++ +a;

 printf(“a = %d b = %d d = %d\n”,a, b, d);

 printf(“a/b = %d\n”, a/b);

 printf(“a%%b = %d\n”, a%b);

 printf(“a *= b = %d\n”, a*=b);

 printf(“%d\n”, (c>d) ? 1 : 0);

 printf(“%d\n”, (c<d) ? 1 : 0);

 }

 Output

 a = 16 b = 10 c = 6

 a = 16 b = 11 d = 26

 a/b = 1

 a%b = 5

 a *=b = 176

 0

 1

 Fig. 3.3 Further illustration of arithmetic operators

Operators and Expressions 63

3.10 ARITHMETIC EXPRESSIONS

An arithmetic expression is a combination of variables, constants, and operators arranged as per the

syntax of the language. We have used a number of simple expressions in the examples discussed so

far. C can handle any complex mathematical expressions. Some of the examples of C expressions are

shown in Table 3.6. Remember that C does not have an operator for exponentiation.

Table 3.6 Expressions

Algebraic expression C expression

a x b - c a * b - c

(m+n) (x+y) (m+n) * (x+y)

ab

c

Ê
ËÁ

ˆ
¯̃

a * b/c

3x2 +2x+1 3 * x * x 2 * x + 1

x

y
c

Ê
ËÁ

ˆ
¯̃

+ x/y+c

3.11 EVALUATION OF EXPRESSIONS

variable = expression;

Variable is any valid C variable name. When the statement is encountered, the expression is

variables used in the expression must be assigned values before evaluation is attempted. Examples of

evaluation statements are

 x = a * b - c;

 y = b / c * a;

 z = a - b / c + d;

The blank space around an operator is optional and adds only to improve readability. When these

the expressions.

Program 3.4
The program in Fig. 3.4 illustrates the use of variables in expressions and

their evaluation.

Output of the program also illustrates the effect of presence of parentheses in expressions. This is

discussed in the next section.

Programming in ANSI C64

 Program

 main()

 {

 float a, b, c, x, y, z;

 a = 9;

 b = 12;

 c = 3;

 x = a – b / 3 + c * 2 - 1;

 y = a – b / (3 + c) * (2 - 1);

 z = a – (b / (3 + c) * 2) - 1;

 printf(“x = %f\n”, x);

 printf(“y = %f\n”, y);

 printf(“z = %f\n”, z);

 }

 Output

 x = 10.000000

 y = 7.000000

 z = 4.000000

 Fig. 3.4 Illustrations of evaluation of expressions

3.12 PRECEDENCE OF ARITHMETIC OPERATORS

An arithmetic expression without parentheses will be evaluated from left to right using the rules of

High priority * / %

Low priority +

The basic evaluation procedure includes ‘two’ left-to-right passes through the expression. During the

pass, the low priority operators (if any) are applied as they are encountered. Consider the following

evaluation statement that has been used in the program of Fig. 3.4.

x = a b/3 + c*2 1

When a = 9, b = 12, and c = 3, the statement becomes

x = 9 12/3 + 3*2 1

and is evaluated as follows

Operators and Expressions 65

4+3*2 1

4+6 1

1

1

These steps are illustrated in Fig. 3.5. The numbers inside parentheses refer to step numbers.

9 – 12/3 3*2+ –
(1)

1

(2)

(4)

10

(5)

(3)

4

5

11

6

Fig. 3.5 Illustration of hierarchy of operations

However, the order of evaluation can be changed by introducing parentheses into an expression.

9 12/(3+3)*(2 1)

Whenever parentheses are used, the expressions within parentheses assume highest priority. If two

or more sets of parentheses appear one after another as shown above, the expression contained in the

This time, the procedure consists of three left-to-right passes. However, the number of evaluation

steps remains the same as 5 (i.e., equal to the number of arithmetic operators).

Parentheses may be nested, and in such cases, evaluation of the expression will proceed outward

from the innermost set of parentheses. Just make sure that every opening parenthesis has a matching

closing parenthesis. For example

Programming in ANSI C66

9 – (12/(3+3) * 2) – 1 = 4

whereas

9 – ((12/3) + 3 * 2) – 1 = –2

While parentheses allow us to change the order of priority, we may also use them to improve

understandability of the program. When in doubt, we can always add an extra pair just to make sure that

the priority assumed is the one we require.

Rules for Evaluation of Expression

 ∑ First, parenthesized sub expression from left to right are evaluated.

 ∑ If parentheses are nested, the evaluation begins with the innermost sub-expression.

 ∑ The precedence rule is applied in determining the order of application of operators in evaluating

sub-expressions.

 ∑ The associativity rule is applied when two or more operators of the same precedence level

appear in a sub-expression.

 ∑ Arithmetic expressions are evaluated from left to right using the rules of precedence.

 ∑ When parentheses are used, the expressions within parentheses assume highest priority.

Program 3.5 Write a C program for the following expression: a=5<=8 && 6!=5.

 #include <stdio.h>

 #include <conio.h>

 void main()

 {

 int a;

 a = 5<=8 && 6!=5;

 printf(“%d“, a);

 getch();

 }

 Output

 1

Fig. 3.6 Program for the expression: a = 5 < = 8 && 6! = 5

3.13 SOME COMPUTATIONAL PROBLEMS

When expressions include real values, then it is important to take necessary precautions to guard against

certain computational errors. We know that the computer gives approximate values for real numbers

and the errors due to such approximations may lead to serious problems. For example, consider the

following statements:

 a = 1.0/3.0;

 b = a * 3.0;

We know that (1.0/3.0) 3.0 is equal to 1. But there is no guarantee that the value of b computed in a

program will equal 1.

Operators and Expressions 67

Another problem is division by zero. On most computers, any attempt to divide a number by zero will

result in abnormal termination of the program. In some cases such a division may produce meaningless

results. Care should be taken to test the denominator that is likely to assume zero value and avoid any

division by zero.

Program 3.6
Output of the program in Fig. 3.7 shows round-off errors that can occur in

 Program

 /*————————— Sum of n terms of 1/n —————————*/

 main()

 {

 float sum, n, term ;

 int count = 1 ;

 sum = 0 ;

 printf(“Enter value of n\n”) ;

 scanf(“%f”, &n) ;

 term = 1.0/n ;

 while(count <= n)

 {

 sum = sum + term ;

 count++ ;

 }

 printf(“Sum = %f\n”, sum) ;

 }

 Output

 Enter value of n

 99

 Sum = 1.000001

 Enter value of n

 143

 Su = 0.999999

 Fig. 3.7

the result is not always 1.

Programming in ANSI C68

3.14 TYPE CONVERSIONS IN EXPRESSIONS

C permits mixing of constants and variables of different types in an expression. C automatically converts

any intermediate values to the proper type so that the expression can be evaluated without loosing any

implicit type conversion.

During evaluation it adheres to very strict rules of type conversion. If the operands are of different

types, the ‘lower’ type is automatically converted to the ‘higher’ type before the operation proceeds. The

result is of the higher type. A typical type conversion process is illustrated in Fig. 3.8.

int i, x;

x

long

long float

float

float

float

double

doubleint

1 i i f d*/= + –

float f;

double d;

long int 1;

Fig. 3.8 Process of implicit type conversion

Given below is the sequence of rules that are applied while evaluating expressions.

All and char are automatically converted to int; then

 1. if one of the operands is the other will be converted to and the result

will be ;

 2. else, if one of the operands is the other will be converted to and the result will be

;

 3. else, if one of the operands is the other will be converted to and the result will be ;

 4. else, if one of the operands is unsigned , the other will be converted to

int and the result will be ;

 5. else, if one of the operands is and the other is unsigned int, then

 (a) if unsigned int can be converted to , the unsigned int operand will be converted

as such and the result will be ;

 (b) else, both operands will be converted to and the result will be unsigned

;

Operators and Expressions 69

 6. else, if one of the operands is long int, the other will be converted to long int and the result will

be long int;

 7. else, if one of the operands is unsigned int, the other will be converted to unsigned int and the

result will be unsigned int.

Conversion Hierarchy

Note that, C uses the rule that, in all expressions except assignments, any implicit type conversions are

made from a lower size type to a higher size type as shown below:

assignment.

 1. to int causes truncation of the fractional part.

 2. double to causes rounding of digits.

 3. long int to int causes dropping of the excess higher order bits.

Explicit Conversion

We have just discussed how C performs type conversion automatically. However, there are instances

when we want to force a type conversion in a way that is different from the automatic conversion.

Consider, for example, the calculation of ratio of females to males in a town.

ratio = female_number/male_number

Programming in ANSI C70

Since female_number and male_number are declared as integers in the program, the decimal part

of the result of the division would be lost and

ratio = (female_number/male_number

The operator (converts the female_number

mode, thus retaining the fractional part of result.

 affect the value of the variable female number. And

also, the type of female number remains as int in the other parts of the program.

The process of such a local conversion is known as explicit conversion or casting a value. The

(type-name) expression

where type-name is one of the standard C data types. The expression may be a constant, variable or an

expression. Some examples of casts and their actions are shown in Table 3.7.

Table 3.7 Use of Casts

Example Action

x = (int) 7.5 7.5 is converted to integer by truncation.

a = (21.3/(int)4.5 Evaluated as 21/4 and the result would be 5.

b = ()sum/n

y = (int) (a+b) The result of a+b is converted to integer.

z = (int)a+b a is converted to integer and then added to b.

p = cos(()x) Converts x to double before using it.

 x = (int) (y+0.5);

 If y is 27.6, y+0.5 is 28.1 and on casting, the result becomes 28, the value that is assigned to x. Of

course, the expression, being cast is not changed.

Program 3.7
Figure 3.9 shows a program using a cast to evaluate the equation

sum = (/)1

1

i

i =

n

Â
 Program

 main()

 {

 float sum ;

 int n ;

 sum = 0 ;

 for(n = 1 ; n <= 10 ; ++n)

Operators and Expressions 71

 {

 sum = sum + 1/(float)n ;

 printf(“%2d %6.4f\n”, n, sum) ;

 }

 }

 Output

 1 1.0000

 2 1.5000

 3 1.8333

 4 2.0833

 5 2.2833

 6 2.4500

 7 2.5929

 8 2.7179

 9 2.8290

 10 2.9290

 Fig. 3.9 Use of a cast

 3.15 OPERATOR PRECEDENCE AND ASSOCIATIVITY

As mentioned earlier each operator, in C has a precedence associated with it. This precedence is used

to determine how an expression involving more than one operator is evaluated. There are distinct levels

of precedence and an operator may belong to one of these levels. The operators at the higher level of

to right’ or from ‘right to left’, depending on the level. This is known as the associativity property of an

operator. Table 3.8 provides a complete list of operators, their precedence levels, and their rules of

association. The groups are listed in the order of decreasing precedence. Rank 1 indicates the highest

precedence level and 15 the lowest. The list also includes those operators, which we have not yet been

discussed.

It is very important to note carefully, the order of precedence and associativity of operators. Consider

if (x == 10 + 15 && y < 10)

The precedence rules say that the addition operator has a higher priority than the logical operator

if (x == 25 && y < 10)

The next step is to determine whether x is equal to 25 and y is less than 10. If we assume a value of

20 for x and 5 for y, then

x == 25 is FALSE (0)

y < 10 is TRUE (1)

Programming in ANSI C72

x == 25 is tested.

if (FALSE && TRUE)

Because one of the conditions is FALSE, the complex condition is FALSE.

In the case of &&

Table 3.8 Summary of C Operators

Operator Description Associativity Rank

() Function call Left to right 1
[] Aray element reference

+ Unary plus
Unary minus Right to left 2

++ Increment
Decrement

! Logical negation
~ Ones complement
* Pointer reference (indirection)
& Address
sizeof
(type) Type cast (conversion)

* Multiplication Left to right 3
/ Division
% Modulus
+ Addition Left to right 4

Subtraction
<< Left shift Left to right 5
>> Right shift
< Less than Left to right 6
<= Less than or equal to
> Greater than
>= Greater than or equal to
== Equality Left to right 7
|= Inequality
& Left to right 8
^ Bitwise XOR Left to right 9
| Bitwise OR Left to right 10
&& Left to right 11
|| Logical OR Left to right 12

Conditional expression Right to left 13
= Assignment operators Right to left 14
* = /= %=
+= = &=
^= |=
<<= >>=
, Comma operator Left to right 15

Operators and Expressions 73

 ∑ Precedence rules decides the order in which different operators are applied

 ∑ Associativity rule decides the order in which multiple occurrences of the same level operator are

applied

3.16 MATHEMATICAL FUNCTIONS

Mathematical functions such as cos, sqrt, log, etc. are frequently used in analysis of real-life problems.

Most of the C compilers support these basic math functions. However, there are systems that have

functions are available. Table 3.9 lists some standard math functions.

Table 3.9 Math functions

Function Meaning

acos(x) Arc cosine of x

asin(x) Arc sine of x

atan(x) Arc tangent of x

atan 2(x,y) Arc tangent of x/y

cos(x) Cosine of x

sin(x) Sine of x

tan(x) Tangent of x

cosh(x) Hyperbolic cosine of x

sinh(x) Hyperbolic sine of x

tanh(x) Hyperbolic tangent of x

ceil(x) x rounded up to the nearest integer

exp(x) e to the x power (ex)

fabs(x) Absolute value of x.

x rounded down to the nearest integer

fmod(x,y) Remainder of x/y

log(x)

log10(x) Base 10 log of x, x > 0

pow(x,y) x to the power y (xy)

sqrt(x) Square root of x, x > = 0

 1. x and y should be declared as

 2. In trigonometric and hyperbolic functions, x and y are in radians.

Programming in ANSI C74

 3. All the functions return a .

 4. C99 has added and versions of these functions.

 5. C99 has added many more mathematical functions.

As pointed out earlier in Chapter 1, to use any of these functions in a program, we should include

 # include <math.h>

in the beginning of the program.

Just Remember

 ∑ Use decrement and increment operators carefully. Understand the difference between

and operations before using them.

 ∑ Add parentheses wherever you feel they would help to make the evaluation order clear.

 ∑ Be aware of side effects produced by some expressions.

 ∑
in incorrect results.

 ∑ Do not forget a semicolon at the end of an expression.

 ∑ Understand clearly the precedence of operators in an expression. Use parentheses, if necessary.

 ∑ Associativity is applied when more than one operator of the same precedence are used in an

expression. Understand which operators associate from right to left and which associate from left

to right.

 ∑ Do not use increment or decrement operators with any expression other than a .

 ∑ It is illegal to apply modules operator % with anything other than integers.

 ∑ Do not use a variable in an expression before it has been assigned a value.

 ∑ Integer division always truncates the decimal part of the result. Use it carefully. Use casting

where necessary.

 ∑ The result of an expression is converted to the type of the variable on the left of the assignment

before assigning the value to it. Be careful about the loss of information during the conversion.

 ∑ All mathematical functions implement double type parameters and return double type values.

 ∑ It is an error if any space appears between the two symbols of the operators ==, !=, <= and >=.

 ∑ It is an error if the two symbols of the operators !=, <= and >= are reversed.

 ∑ Use spaces on either side of binary operator to improve the readability of the code.

 ∑
 ∑ Do not confuse the equality operator == with the assignment operator =.

Case Studies

1. Salesman’s Salary

A computer manufacturing company has the following monthly compensation policy to their sales-

Operators and Expressions 75

of every month. A program to compute a sales-person’s gross salary is given in Fig. 3.10.

 Program

 #define BASE_SALAR 1500.00

 #define BONUS_RATE 200.00

 #define COMMISSION 0.02

 main()

 {

 int quantity ;

 float gross_salary, price ;

 float bonus, commission ;

 printf(“Input number sold and price\n”) ;

 scanf(“%d %f”, &quantity, &price) ;

 bonus = BONUS_RATE * quantity ;

 commission = COMMISSION * quantity * price ;

 gross_salary = BASE_SALARY + bonus + commission ;

 printf(“\n”);

 printf(“Bonus = %6.2f\n”, bonus) ;

 printf(“Commission = %6.2f\n”, commission) ;

 printf(“Gross salary = %6.2f\n”, gross_salary) ;

 }

 Output

 Input number sold and price

 5 20450.00

 Bonus = 1000.00

 Commission = 2045.00

 Gross salary = 4545.00

 Fig. 3.10 Program of salesman’s salary

Given the base salary, bonus, and commission rate, the inputs necessary to calculate the gross

salary are, the price of each computer and the number sold during the month.

 Gross salary = base salary + (quantity * bonus rate)

 + (quantity * Price) * commission rate

An equation of the form

ax2 + bx + c = 0

Programming in ANSI C76

is known as the quadratic equation. The values of x that satisfy the equation are known as the roots of

 root1 =
- + -b sqrt b ac

a

()2 4

2

 root 2 =
- - -b sqrt b ac

a

()2 4

2

A program to evaluate these roots is given in Fig. 3.11. The program requests the user to input the

values of a, b and c and outputs and .

 Program

 #include <math.h>

 main()

 {

 float a, b, c, discriminant,

 root1, root2;

 printf(“Input values of a, b, and c\n”);

 scanf(“%f %f %f”, &a, &b, &c);

 discriminant = b*b - 4*a*c ;

 if(discriminant < 0)

 printf(“\n\nROOTS ARE IMAGINARY\n”);

 else

 {

 root1 = (-b + sqrt(discriminant))/(2.0*a);

 root2 = (-b - sqrt(discriminant))/(2.0*a);

 printf(“\n\nRoot1 = %5.2f\n\nRoot2 = %5.2f\n”,

 root1,root2);

 }

 }

 Output

 Input values of a, b, and c

 2 4 -16

 Root1 = 2.00

 Root2 = -4.00

 Input values of a, b, and c

 1 2 3

 ROOTS ARE IMAGINARY

 Fig. 3.11 Solution of a quadratic equation

The term (b2–4ac) is called the discriminant. If the discriminant is less than zero, its square roots

cannot be evaluated. In such cases, the roots are said to be imaginary numbers and the program

outputs an appropriate message.

Operators and Expressions 77

 3.1 State whether the following statements are true or false.

 (a) All arithmetic operators have the same level of precedence.

 (b) The modulus operator % can be used only with integers.

 (d) During modulo division, the sign of the result is positive, if both the operands are of the

same sign.

 (e) In C, if a data item is zero, it is considered false.

 (f) The expression !(x<=y) is same as the expression x>y.

 (g) A unary expression consists of only one operand with no operators.

 (i) An expression statement is terminated with a period.

 (k) An explicit cast can be used to change the expression.

 (l) Parentheses can be used to change the order of evaluation expressions.

 3.2 Fill in the blanks with appropriate words.

 (a) The expression containing all the integer operands is called________ expression.

 (b) The operator _________cannot be used with real operands.

 (c) C supports as many as _______relational operators.

 (d) An expression that combines two or more relational expressions is termed as __________

expression.

 (e) The ___________operator returns the number of bytes the operand occupies.

 (f) The order of evaluation can be changed by using ______ in an expression.

 (g) The use of ________ on a variable can change its type in the memory.

 (h) _________is used to determine the order in which different operators in an expression are

evaluated.

 3.3 Given the statement

 int a = 10, b = 20, c;

 determine whether each of the following statements are true or false.

 (a) The statement a = + 10, is valid.

 (b) The expression a + 4/6 * 6/2 evaluates to 11.

 (c) The expression b + 3/2 * 2/3 evaluates to 20.

 (d) The statement a + = b; gives the values 30 to a and 20 to b.

 (e) The statement ++a++; gives the value 12 to a

 (f) The statement a = 1/b; assigns the value 0.5 to a

 3.4 Declared a as int and b as , state whether the following statements are true or false.

 (a) The statement a = 1/3 + 1/3 + 1/3; assigns the value 1 to a.

 (b) The statement b = 1.0/3.0 + 1.0/3.0 + 1.0/3.0; assigns a value 1.0 to b.

 (c) The statement b = 1.0/3.0 * 3.0 gives a value 1.0 to b.

 (d) The statement b = 1.0/3.0 + 2.0/3.0 assigns a value 1.0 to b.

 (e) The statement a = 15/10.0 + 3/2; assigns a value 3 to a.

 3.5 Which of the following expressions are true?

 (a) !(5 + 5 >=10)

Programming in ANSI C78

 (b) 5 + 5 = = 10 || 1 + 3 = = 5

 (c) 5 > 10 || 10 < 20 && 3 < 5

 (d) 10 ! = 15 && !(10<20) || 15 > 30

 3.6 Which of the following arithmetic expressions are valid ? If valid, give the value of the expression;

otherwise give reason.

 (a) 25/3 % 2 (e) 14 % 3

 (b) +9/4 + 5 (f) 15.25 + 5.0

 (c) 7.5 % 3 (g) (5/3) * 3 + 5 % 3

 (d) 14 % 3 + 7 % 2 (h) 21 % (int)4.5

 (a) Area = p r2 +2 p rh

 (b) Torque =
2 1 2

1 2

m m

m m+
◊ g

 (c) Side = a b ab cos x2 2 2+ - ()

 (d) Energy = mass acceleration height
velocity

¥ +
È

Î
Í
Í

˘

˚
˙
˙

()2

2

 3.8 Identify unnecessary parentheses in the following arithmetic expressions.

 (a) ((x (y/5)+z)%8) + 25

 (b) ((x y) * p)+q

 (c) (m*n) + (x/y)

 (d) x/(3*y)

 3.9 Find errors, if any, in the following assignment statements and rectify them.

 (a) x = y = z = 0.5, 2.0. 5.75;

 (b) m = ++a * 5;

 (c) y = sqrt(100);

 (d) p * = x/y;

 (e) s = /5;

 (f) a = b++ c*2

 3.10 Determine the value of each of the following logical expressions if a = 5, b = 10 and c = 6

 (a) a > b && a < c

 (b) a < b && a > c

 (c) a == c || b > a

 (d) b > 15 && c < 0 || a > 0

 (e) (a/2.0 == 0.0 && b/2.0 != 0.0) || c < 0.0

 3.11 What is the output of the following program?

 main ()

 {

 char x;

 int y;

 x = 100;

 y = 125;

Operators and Expressions 79

 printf (“%c\n”, x) ;

 printf (“%c\n”, y) ;

 printf (“%d\n”, x) ;

 }

 3.12 Find the output of the following program?

 main ()

 {

 int x = 100;

 printf(“%d/n”, 10 + x++);

 printf(“%d/n”, 10 + ++x);

 }

 3.13 What is printed by the following program?

 main

 {

 int x = 5, y = 10, z = 10 ;

 x = y == z;

 printf(“%d”,x) ;

 }

 3.14 What is the output of the following program?

 main ()

 {

 int x = 100, y = 200;

 printf (“%d”, (x > y)? x : y);

 }

 3.15 What is the output of the following program?

 main ()

 {

 unsigned x = 1 ;

 signed char y = -1 ;

 if(x > y)

 printf(“ x > y”);

 else

 printf(“x<= y”) ;

 }

 Did you expect this output? Explain.

 3.16 What is the output of the following program? Explain the output.

 main ()

 {

 int x = 10 ;

 if(x = 20) printf(“TRUE”) ;

 else printf(“FALSE”) ;

 }

Programming in ANSI C80

 3.17 What is the error in each of the following statements?

 (a) if (m == 1 & n ! = 0)

 (b) if (x = < 5)

 3.18 What is the error, if any, in the following segment?

 int x = 10 ;

 float y = 4.25 ;

 x = y%x ;

 3.19 What is printed when the following is executed?

 for (m = 0; m <3; ++m)

 printf(“%d/n”, (m%2) ? m: m+2);

 3.20 What is the output of the following segment when executed?

 int m = - 14, n = 3;

 printf(“%d\n”, m/n * 10) ;

 n = -n;

 printf(“%dn”, m/n * 10);

 3.1 Given the values of the variables x, y and z, write a program to rotate their values such that x has

the value of y, y has the value of z, and z has the value of x.

integral part of the number.

 3.3 Modify the above program to display the two right-most digits of the integral part of the number.

 3.4 Write a program that will obtain the length and width of a rectangle from the user and compute its

area and perimeter.

 …….

 5 6 7 8

 6 7 8

 7 8

 8

 3.6 The straight-line method of computing the yearly depreciation of the value of an item is given by

 Depreciation =
Purchase Price Salvage Value

Years of Service

-

 Write a program to determine the salvage value of an item when the purchase price, years of

service, and the annual depreciation are given.

Operators and Expressions 81

 3.7 Write a program that will read a real number from the keyboard and print the following output in

 Smallest integer The given Largest integer

 not less than number not greater than

 the number the number

 3.8 The total distance travelled by a vehicle in t seconds is given by

 distance = ut + (at2)/2

 Where u is the initial velocity (metres per second), a is the acceleration (metres per second 2).

Write a program to evaluate the distance travelled at regular intervals of time, given the values of

u and a

repeat the calculations for different values of u and a.

 3.9 In inventory management, the Economic Order Quantity for a single item is given by

 EOQ =
2 ¥ ¥demand rate setup costs

holding cost per item per unit time

 and the optimal Time Between Orders

 TBO =
2 ¥
¥

setup costs

cost per unit timedemand rate holding

 Write a program to compute EOQ and TBO, given demand rate (items per unit time), setup costs

(per order), and the holding cost (per item per unit time).

 3.10 For a certain electrical circuit with an inductance L and resistance R, the damped natural

frequency is given by

 Frequency =
1

4

2

2LC

R

C
-

 It is desired to study the variation of this frequency with C (capacitance). Write a program to

calculate the frequency for different values of C starting from 0.01 to 0.1 in steps of 0.01.

 3.11 Write a program to read a four digit integer and print the sum of its digits.

 3.12 Write a program to print the size of various data types in C.

 3.13 Given three values, write a program to read three values from keyboard and print out the largest

of them without using if statement.

 3.14 Write a program to read two integer values m and n and to decide and print whether m is a

multiple of n.

 3.15 Write a program to read three values using scanf

 (a) Sum of the values

 (b) Average of the three values

 (c) Largest of the three

 (d) Smallest of the three

 3.16 The cost of one type of mobile service is Rs. 250 plus Rs. 1.25 for each call made over and above

100 calls. Write a program to read customer codes and calls made and print the bill for each

customer.

 3.17 Write a program to print a table of sin and functions for the interval from 0 to 180 degrees in

increments of 15 a shown here.

Programming in ANSI C82

x (degrees) sin (x) cos (x)

0

15

...

...

180

 3.18 Write a program to compute the values of square-roots and squares of the numbers 0 to 100 in

steps 10 and print the output in a tabular form as shown below.

Square-root Square

0 0 0

100 10 10000

 3.19 Write a program that determines whether a given integer is odd or even and displays the number

and description on the same line.

 3.20 Write a program to illustrate the use of cast operator in a real life situation.

4 MANAGING INPUT AND

OUTPUT OPERATIONS

Key Terms

Formatted input I Control string I Formatted output.

4.1 INTRODUCTION

Reading, processing, and writing of data are the three essential functions of a computer program. Most

programs take some data as input and display the processed data, often known as information or results,

on a suitable medium. So far we have seen two methods of providing data to the program variables. One

method is to assign values to variables through the assignment statements such as x = 5; a = 0; and so

on. Another method is to use the input function scanf which can read data from a keyboard. We have

used both the methods in most of our earlier example programs. For outputting results we have used

extensively the function printf which sends results out to a terminal.

Unlike other high-level languages, C does not have any built-in input/output statements as part of

its syntax. All input/output operations are carried out through function calls such as printf and scanf.

There exist several functions that have more or less become standard for input and output operations

in C. These functions are collectively known as the standard I/O library. In this chapter we shall discuss

some common I/O functions that can be used on many machines without any change. However, one

should consult the system reference manual for exact details of these functions and also to see what

other functions are available.

It may be recalled that we have included a statement

#include <math.h>

in the Sample Program 5 in Chapter 1, where a math library function cos(x) has been used. This is

to instruct the compiler to fetch the function cos(x) from the math library, and that it is not a part of C

language. Similarly, each program that uses a standard input/output function must contain the statement

#include <stdio.h>

at the beginning. However, there might be exceptions. For example, this is not necessary for the functions

printf and scanf

stdio.h is an abbreviation for standard input-output header #include

<stdio.h> stdio.h and place its contents at this point in the

Programming in ANSI C84

4.2 READING A CHARACTER

The simplest of all input/output operations is reading a character from the ‘standard input’ unit (usually

the keyboard) and writing it to the ‘standard output’ unit (usually the screen). Reading a single character

can be done by using the function getchar. (This can also be done with the help of the scanf function

which is discussed in Section 4.4.) The getchar takes the following form:

variable_name = getchar();

variable_name is a valid C name that has been declared as char type. When this statement is

encountered, the computer waits until a key is pressed and then assigns this character as a value

to getchar function. Since getchar is used on the right-hand side of an assignment statement, the

character value of getchar is in turn assigned to the variable name on the left. For example

char name;

name = getchar();

Will assign the character ‘H’ to the variable name when we press the key H on the keyboard. Since

getchar is a function, it requires a set of parentheses as shown.

Program 4.1
The program in Fig. 4.1 shows the use of getchar function in an interactive

environment.

The program displays a question of YES/NO type to the user and reads the user’s response in a single

character (Y or N). If the response is Y or y, it outputs the message

My name is BUSY BEE

otherwise, outputs

You are good for nothing

 Note There is one line space between the input text and output message.

 Program

 #include <stdio.h>

 main()

 {

 char answer;

 printf(“Would you like to know my name?\n”);

 printf(“Type Y for YES and N for NO: “);

 answer = getchar(); /* Reading a character...*/

 if(answer == ‘Y’ || answer == ‘y’)

 printf(“\n\nMy name is BUSY BEE\n”);

 else

 printf(“\n\nYou are good for nothing\n”);

 }

 Output

 Would you like to know my name?

Managing Input and Output Operations 85

 Type Y for YES and N for NO: Y

 My name is BUSY BEE

 Would you like to know my name?

 Type Y for YES and N for NO: n

 You are good for nothing

 Fig. 4.1 Use of getchar function to read a character from keyboard

The getchar function may be called successively to read the characters contained in a line of text.

For example, the following program segment reads characters from keyboard one after another until the

‘Return’ key is pressed.

 — — — –———–

 — — — –———–

 char character;

 character = ‘ ‘;

 while(character != ‘\n’)

 {

 character = getchar();

 }

 — — — –———–

 — — — –———–

! Warning

The getchar() function accepts any character keyed in. This includes RETURN and TAB. This

means when we enter single character input, the newline character is waiting in the input queue

after getchar() returns. This could create problems when we use getchar() in a loop interactively. A

dummy getchar() may be used to ‘eat’ the unwanted newline character. We can also use the

Note We shall be using decision statements like if, if…else and while extensively in this

chapter. They are discussed in detail in Chapters 5 and 6.

Program 4.2
The program of Fig. 4.2 requests the user to enter a character and displays a

message on the screen telling the user whether the character is an alphabet

or digit, or any other special character.

This program receives a character from the keyboard and tests whether it is a letter or digit and prints

out a message accordingly. These tests are done with the help of the following functions:

isalpha(character)

isdigit(character)

For example, isalpha assumes a value non-zero (TRUE) if the argument character contains an

alphabet; otherwise it assumes 0 (FALSE). Similar is the case with the function isdigit.

Programming in ANSI C86

 Program:

 #include <stdio.h>

 #include <ctype.h>

 main()

 {

 char character;

 printf(“Press any key\n”);

 character = getchar();

 if (isalpha(character) > 0)/* Test for letter */

 printf(“The character is a letter.”);

 else

 if (isdigit (character) > 0)/* Test for digit */

 printf(“The character is a digit.”);

 else

 printf(“The character is not alphanumeric.”);

 }

 Output

 Press any key

 h

 The character is a letter.

 Press any key

 5

 The character is a digit.

 Press any key

 *

 The character is not alphanumeric.

 Fig. 4.2 Program to test the character type

C supports many other similar functions, which are given in Table 4.1. These character functions are

ctype.h and therefore the statement

#include <ctype.h>

must be included in the program.

Table 4.1 Character Test Functions

Function Test

isalnum(c) Is c an alphanumeric character?

isalpha(c) Is c an alphabetic character?

isdigit(c) Is c a digit?

islower(c) Is c lower case letter?

isprint(c) Is c a printable character?

ispunct(c) Is c a punctuation mark?

isspace(c) Is c a white space character?

isupper(c) Is c an upper case letter?

Managing Input and Output Operations 87

4.3 WRITING A CHARACTER

Like getchar, there is an analogous function putchar for writing characters one at a time to the terminal.

It takes the form as shown below:

putchar (variable_name);

where variable_name is a type char variable containing a character. This statement displays the

character contained in the variable_name at the terminal. For example, the statements

answer = ‘Y’;

putchar (answer);

will display the character Y on the screen. The statement

putchar (‘\n’);

would cause the cursor on the screen to move to the beginning of the next line.

Program 4.3
A program that reads a character from keyboard and then prints it in reverse

case is given in Fig. 4.3. That is, if the input is upper case, the output will be

lower case and vice versa.

The program uses three new functions: islower, toupper, and tolower. The function islower is a

conditional function and takes the value TRUE if the argument is a lowercase alphabet; otherwise takes

the value FALSE. The function toupper converts the lowercase argument into an uppercase alphabet

while the function tolower does the reverse.

 Program
 #include <stdio.h>
 #include <ctype.h>
 main()
 {
 char alphabet;
 printf(“Enter an alphabet”);
 putchar(‘\n’); /* move to next line */
 alphabet = getchar();
 if (islower(alphabet))
 putchar(toupper(alphabet));/* Reverse and display */
 else
 putchar(tolower(alphabet)); /* Reverse and display */
 }

 Output
 Enter an alphabet
 a
 A
 Enter an alphabet
 Q
 q
 Enter an alphabet
 z
 Z

 Fig. 4.3 Reading and writing of alphabets in reverse cast

Programming in ANSI C88

4.4 FORMATTED INPUT

Formatted input refers to an input data that has been arranged in a particular format. For example,

consider the following data:

15.75 123 John

This line contains three pieces of data, arranged in a particular form. Such data has to be read

a variable , the second into int, and the third part into char. This is possible in C using the scanf

function. (scanf means scan formatted.)

We have already used this input function in a number of examples. Here, we shall explore all of the

options that are available for reading the formatted data with scanf function. The general form of scanf

is

scanf (“control string”, arg1, arg2, argn);

The control string arg1,

arg2,, argn specify the address of locations where the data is stored. Control string and arguments

are separated by commas.

Control string (also known as format string

of input data. It may include:

 ∑

optional

 ∑ Blanks, tabs, or newlines.

Blanks, tabs and newlines are ignored. The data type character indicates the type of data that is to

optional. The discussions that follow will clarify these concepts.

Inputting Integer Numbers

% w sd

The percentage sign (% w is an integer number

 of the number to be read and d, known as data type character, indicates

that the number to be read is in integer mode. Consider the following example:

scanf (“%2d %5d”, &num1, &num2);

Data line:

50 31426

The value 50 is assigned to num1 and 31426 to num2. Suppose the input data is as follows:

31426 50

The variable num1 num2 will be assigned 426 (unread

scanf

scanf(“%d %d”, &num1, &num2);

will read the data

 31426 50

correctly and assign 31426 to num1 and 50 to num2.

Managing Input and Output Operations 89

Input data items must be separated by spaces, tabs or newlines. Punctuation marks do not count as

separators. When the scanf function searches the input data line for a value to be read, it will always

bypass any white space characters.

stripped away! Also, scanf may skip reading further input.

When the scanf reads a particular value, reading of the value will be terminated as soon as the

valid for the value being read is encountered. In the case of integers, valid characters are an optionally

signed sequence of digits.

*
scanf(“%d %*d %d”, &a, &b)

will assign the data

123 456 789

as follows:

123 to a
456 skipped (because of *)
789 to b

The data type character d may be preceded by ‘l’ (letter ell) to read long integers and h to read short

integers.

Note

necessary with the numeric input, but it is a good practice to include the.

Program 4.4
Various input formatting options for reading integers are experimented in the

program shown in Fig. 4.4.

 Program

 main()

 {

 int a,b,c,x,y,z;

 int p,q,r;

 printf(“Enter three integer numbers\n”);

 scanf(“%d %*d %d”,&a,&b,&c);

 printf(“%d %d %d \n\n”,a,b,c);

 printf(“Enter two 4-digit numbers\n”);

 scanf(“%2d %4d”,&x,&y);

 printf(“%d %d\n\n”, x,y);

 printf(“Enter two integers\n”);

 scanf(“%d %d”, &a,&x);

 printf(“%d %d \n\n”,a,x);

 printf(“Enter a nine digit number\n”);

 scanf(“%3d %4d %3d”,&p,&q,&r);

 printf(“%d %d %d \n\n”,p,q,r);

 printf(“Enter two three digit numbers\n”);

 scanf(“%d %d”,&x,&y);

 printf(“%d %d”,x,y);

 }

Programming in ANSI C90

 Output

 Enter three integer numbers

 1 2 3

 1 3 -3577

 Enter two 4-digit numbers

 6789 4321

 67 89

 Enter two integers

 44 66

 4321 44

 Enter a nine-digit number

 123456789

 66 1234 567

 Enter two three-digit numbers

 123 456

 89 123

 Fig. 4.4 Reading integers using scanf

scanf requests input data for three integer values a, b, and c, and accordingly three values

assigned to the variable b. Notice that since no data is available for c, it contains garbage.

The second scanf x and y respectively. Whenever

next variable in the list. Thus, the second scanf has truncated the four digit number 6789 and assigned

67 to x and 89 to y

scanf statement.

NOTE: scanf

expects a matching character in the given location. For example,

scanf(“%d-%d”, &a, &b);

accepts input like

123-456

to assign 123 to a and 456 to b.

Inputting Real Numbers

scanf reads

%f for both the notations, namely, decimal point notation

and exponential notation. For example, the statement

scanf(“%f %f %f”, &x, &y, &z);

with the input data

475.89 43.21E-1 678

Managing Input and Output Operations 91

will assign the value 475.89 to x, 4.321 to y, and 678.0 to z

separated by any arbitrary blank spaces.

If the number to be read is of double %lf instead of simple %f.

A number may be skipped using %*f

Program 4.5
Reading of real numbers (in both decimal point and exponential notation) is

illustrated in Fig. 4.5.

 Program

 main()

 {

 float x,y;

 double p,q;

 printf(“Values of x and y:”);

 scanf(“%f %e”, &x, &y);

 printf(“\n”);

 printf(“x = %f\ny = %f\n\n”, x, y);

 printf(“Values of p and q:”);

 scanf(“%lf %lf”, &p, &q);

 printf(“\n\np = %.12lf\np = %.12e”, p,q);

 }

 Output

 Values of x and y:12.3456 17.5e-2

 x = 12.345600

 y = 0.175000

 Values of p and q:4.142857142857 18.5678901234567890

 p = 4.142857142857

 q = 1.856789012346e+001

 Fig. 4.5 Reading of real numbers

Inputting Character Strings

We have already seen how a single character can be read from the terminal using the getchar function.

The same can be achieved using the scanf function also. In addition, a scanf function can input strings

%ws or %wc

read a single character when the argument is a pointer to a char variable.

Program 4.6 Reading of strings using %wc and %ws is illustrated in Fig. 4.6.

%wc for reading a string, the system will wait until the wth character is keyed in.

Programming in ANSI C92

Note %s terminates reading at the encounter of a blank space. Therefore,

name2

name3 name2.

 Program

 main()

 {

 int no;

 char name1[15], name2[15], name3[15];

 printf(“Enter serial number and name one\n”);

 scanf(“%d %15c”, &no, name1);

 printf(“%d %15s\n\n”, no, name1);

 printf(“Enter serial number and name two\n”);

 scanf(“%d %s”, &no, name2);

 printf(“%d %15s\n\n”, no, name2);

 printf(“Enter serial number and name three\n”);

 scanf(“%d %15s”, &no, name3);

 printf(“%d %15s\n\n”, no, name3);

 }

 Output

 Enter serial number and name one

 1 123456789012345

 1 123456789012345r

 Enter serial number and name two

 2 New York

 2 New

 Enter serial number and name three

 2 York

 Enter serial number and name one

 1 123456789012

 1 123456789012r

 Enter serial number and name two

 2 New-York

 2 New-York

 Enter serial number and name three

 3 London

 3 London

 Fig. 4.6 Reading of strings

Some versions of scanf

 %[characters]

 %[^characters]

Managing Input and Output Operations 93

%[characters]

permissible in the input string. If the input string contains any other character, the string will be terminated

%[^characters] does exactly the reverse.

of the string will be terminated at the encounter of one of these characters.

Program 4.7

 Program-A

 main()

 {

 char address[80];

 printf(“Enter address\n”);

 scanf(“%[a-z]”, address);

 printf(“%-80s\n\n”, address);

 }

 Output

 Enter address

 new delhi 110002

 new delhi

 Program-B

 main()

 {

 char address[80];

 printf(“Enter address\n”);

 scanf(“%[^\n]”, address);

 printf(“%-80s”, address);

 }

 Output

 Enter address

 New Delhi 110 002

 New Delhi 110 002

Fig. 4.7

Reading Blank Spaces

thus enabling the scanf to read strings with spaces. Remember that the lowercase and uppercase

letters are distinct. See Fig. 4.7.

Programming in ANSI C94

Reading Mixed Data Types

It is possible to use one scanf statement to input a data line containing mixed mode data. In such cases,

in order

and type. When an attempt is made to read an item that does not match the type expected, the scanf

function does not read any further and immediately returns the values read. The statement

scanf (“%d %c %f %s”, &count, &code, &ratio, name);

will read the data

 15 p 1.575 coffee

correctly and assign the values to the variables in the order in which they appear. Some systems accept

in the control string.

Note A space before the %c

space before p.

Detection of Errors in Input

When a scanf function completes reading its list, it returns the value of number of items that are

successfully read. This value can be used to test whether any errors occurred in reading the input. For

example, the statement

scanf(“%d %f %s, &a, &b, name);

will return the value 3 if the following data is typed in:

20 150.25 motor

and will return the value 1 if the following line is entered

20 motor 150.25

Program 4.8
The program presented in Fig. 4.8 illustrates the testing for correctness of

reading of data by scanf function.

The function scanf is expected to read three items of data and therefore, when the values for all the

three variables are read correctly, the program prints out their values. During the third run, the second

item does not match with the type of variable and therefore the reading is terminated and the error

message is printed. Same is the case with the fourth run.

In the last run, although data items do not match the variables, no error message has been printed.

When we attempt to read a real number for an int variable, the integer part is assigned to the variable,

and the truncated decimal part is assigned to the next variable.

 Note The character ‘2’ is assigned to the character variable c.

 Program

 main()

 {

 int a;

 float b;

Managing Input and Output Operations 95

 char c;

 printf(“Enter values of a, b and c\n”);

 if (scanf(“%d %f %c”, &a, &b, &c) == 3)

 printf(“a = %d b = %f c = %c\n” , a, b, c);

 else

 printf(“Error in input.\n”);

 }

 Output

 Enter values of a, b and c

 12 3.45 A

 a = 12 b = 3.450000 c = A

 Enter values of a, b and c

 23 78 9

 a = 23 b = 78.000000 c = 9

 Enter values of a, b and c

 8 A 5.25

 Error in input.

 Enter values of a, b and c

 Y 12 67

 Error in input.

 Enter values of a, b and c

 15.75 23 X

 a = 15 b = 0.750000 = 2

 Fig. 4.8 Detection of errors in scanf input

Commonly used scanf format codes are given in Table 4.2

Table 4.2 Commonly used scanf Format Codes

Code Meaning

read a single character

read a decimal integer

read a short integer

read a decimal, hexadecimal or octal integer

read an octal integer

read a string

read an unsigned decimal integer

read a hexadecimal integer

read a string of word(s)

Programming in ANSI C96

h for short integers

l for long integers or double

L for long double

 Note C99 adds some more format codes. See the Appendix “C99 Features”.

Points to Remember While Using scanf

If we do not plan carefully, some ‘crazy’ things can happen with scanf. Since the I/O routines are not a

part of C language, they are made available either as a separate module of the C library or as a part of

the operating system (like UNIX). New features are added to these routines from time to time as new

versions of systems are released. We should consult the system reference manual before using these

routines. Given below are some of the general points to keep in mind while writing a scanf statement.

 1. All function arguments, except the control string, must be pointers to variables.

 3. Input data items must be separated by spaces and must match the variables receiving the input

in the same order.

 4. The reading will be terminated, when scanf encounters a ‘mismatch’ of data or a character that

is not valid for the value being read.

 5. When searching for a value, scanf ignores line boundaries and simply looks for the next

appropriate character.

 6. Any unread data items in a line will be considered as part of the data input line to the next scanf

call.

w is used, it should be large enough to contain the input data size.

Rules for scanf

 ∑

 ∑

 ∑ Any non-whitespace character used in the format string must have a matching character in the

user input.

 ∑ Never end the format string with whitespace. It is a fatal error!

 ∑ The scanf reads until:

 – The maximum number of characters have been read or

 – An error is detected, or

4.5 FORMATTED OUTPUT

We have seen the use of printf function for printing captions and numerical results. It is highly desirable

that the outputs are produced in such a way that they are understandable and are in an easy-to-use

Managing Input and Output Operations 97

form. It is therefore necessary for the programmer to give careful consideration to the appearance and

clarity of the output produced by his program.

The printf statement provides certain features that can be effectively exploited to control the

alignment and spacing of print-outs on the terminals. The general form of printf statemen is:

printf(“control string”, arg1, arg2,, argn);

Control string consists of three types of items:

 1. Characters that will be printed on the screen as they appear.

 3. Escape sequence characters such as \n, \t, and \b.

The control string indicates how many arguments follow and what their types are. The arguments

arg1, arg2,, argn are the variables whose values are formatted and printed according to the

% w.p type-specifier

where w p is

number) or the number of characters to be printed from a string. Both w and p are optional. Some

examples of formatted printf statement are:

printf(“Programming in C”);

printf(“ “);

printf(“\n”);

printf(“%d”, x);

printf(“a = %f\n b = %f”, a, b);

printf(“sum = %d”, 1234);

printf(“\n\n”);

printf never supplies a newline automatically and therefore multiple printf statements may be used to

build one line of output. A newline can be introduced by the help of a newline character ‘\n’ as shown in

some of the examples above.

Output of Integer Numbers

% w d

where w

d

value to be printed is an integer. The number is written

blanks will appear as necessary. The following examples illustrate the output of the number 9876 under

different formats:

 Format Output

 9 8 7 6

 9 8 7 6

 9 8 7 6

Programming in ANSI C98

9 8 7 6

0 0 9 8 7 6

It is possible to force the printing to be left by placing a minus

character, as shown in the fourth example above. It is also possible to pad with zeros the leading blanks

zero (0) are known as

Long integers may be printed by specifying ld in the place of d

we may use hd for printing short integers.

Program 4.9
The program in Fig. 4.9 illustrates the output of integer numbers under

various formats.

 Program

 main()

 {

 int m = 12345;

 long n = 987654;

 printf(“%d\n”,m);

 printf(“%10d\n”,m);

 printf(“%010d\n”,m);

 printf(“%-10d\n”,m);

 printf(“%10ld\n”,n);

 printf(“%10ld\n”,-n);

 }

 Output

 12345

 12345

 0000012345

 12345

 987654

 – 987654

 Fig. 4.9 Formatted output of integers

Output of Real Numbers

% w.p f

The integer w indicates the minimum number of positions that are to be used for the display of the

value and the integer p indicates the number of digits to be displayed after the decimal point (precision).

The value, when displayed, is rounded to p decimal places and printed w

columns. Leading blanks and trailing zeros will appear as necessary. The default precision is 6 decimal

places. The negative numbers will be printed with the minus sign. The number will be displayed in the form

Managing Input and Output Operations 99

% w.p e

The display takes the form

[-] m.nnnne[±]xx

 p

width w should satisfy the condition.

w ê p+7

w columns.

Padding the leading blanks with zeros and printing with are also possible by using

w.

The following examples illustrate the output of the number y = 98.7654 under different format

 Format Output

9 8 . 7 6 5 4

9 8 . 7 7

9 8 . 7 7

9 8 . 7 6 5 4

9 . 8 8 e + 0 1

– 9 . 8 7 6 5 e + 0 1

9 . 8 8 e + 0 1

9 . 8 7 6 5 4 0 e + 0 1

size at run time. This takes the following form:

printf(“%*.*f”, width, precision, number);

values for w and p. For example,

printf(“%*.*f”,7,2,number);

is equivalent to

printf(“%7.2f”,number);

The advantage of this format is that the values for width and precision may be supplied at run time,

thus making the format a dynamic one. For example, the above statement can be used as follows:

 int width = 7;

 int precision = 2;

 printf(“%*.*f”, width, precision, number);

Program 4.10 All the options of printing a real number are illustrated in Fig. 4.10.

Programming in ANSI C100

 Program

 main()

 {

 float y = 98.7654;

 printf(“%7.4f\n”, y);

 printf(“%f\n”, y);

 printf(“%7.2f\n”, y);

 printf(“%-7.2f\n”, y);

 printf(“%07.2f\n”, y);

 printf(“%*.*f”, 7, 2, y);

 printf(“\n”);

 printf(“%10.2e\n”, y);

 printf(“%12.4e\n”, -y);

 printf(“%-10.2e\n”, y);

 printf(“%e\n”, y);

 }

 Output

 98.7654

 98.765404

 98.77

 98.77

 0098.77

 98.77

 9.88e+001

 -9.8765e+001

 9.88e+001

 9.876540e+001

 Fig. 4.10 Formatted output of real numbers

Printing of a Single Character

A single character can be displayed in a desired position using the format:

%wc

The character will be displayed w columns. We can make the display left-

 by placing a minus sign before the integer w. The default value for w is 1.

Printing of Strings

%w.ps

Managing Input and Output Operations 101

where w p

are to be displayed. The display is .

N

1 1

N

N

N

N

N

E

2 2

E

E

E

E

E

W

3 34 4

W

W

W

W

W

D

5 5

D

D

D

D

D

E

6 6

E

E

E

E

L

7 7

L

L

L

L

H

8 8

H

H

H

H

I

9 90 0

I

I

I

I

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

OutputSpecification

%s

%20s

%20.10s

%-20.10s

%.5s

%5s

Program 4.11 Printing of characters and strings is illustrated in Fig. 4.11.

 Program

 main()

 {

 char x = ‘A’;

 char name[20] = “ANIL KUMAR GUPTA”;

 printf(“OUTPUT OF CHARACTERS\n\n”);

 printf(“%c\n%3c\n%5c\n”, x,x,x);

 printf(“%3c\n%c\n”, x,x);

 printf(“\n”);

 printf(“OUTPUT OF STRINGS\n\n”);

 printf(“%s\n”, name);

 printf(“%20s\n”, name);

 printf(“%20.10s\n”, name);

 printf(“%.5s\n”, name);

 printf(“%-20.10s\n”, name);

 printf(“%5s\n”, name);

 }

 Output

 OUTPUT OF CHARACTERS

Programming in ANSI C102

 A

 A

 A

 A

 A

 OUTPUT OF STRINGS

 ANIL KUMAR GUPTA

 ANIL KUMAR GUPTA

 ANIL KUMAR

 ANIL

 ANIL KUMAR

 ANIL KUMAR GUPTA

 Fig. 4.11 Printing of characters and strings

Mixed Data Output

It is permitted to mix data types in one printf statement. For example, the statement of the type

printf(“%d %f %s %c”, a, b, c, d);

is valid. As pointed out earlier, printf uses its control string to decide how many variables to be printed

order, and type. If there are not enough variables or if they are of the wrong type, the output results will

be incorrect.

Table 4.3 Commonly used printf Format Codes

Code Meaning

print a single character

print a decimal integer

print a signed decimal integer

print an octal integer, without leading zero

print a string

print an unsigned decimal integer

print a hexadecimal integer, without leading Ox

 h for short integers

 l for long integers or double

 L for long double.

Managing Input and Output Operations 103

Table 4.4 Commonly used Output Format Flags

Flag Meaning

–

+ + or – will precede the signed numeric item.

0 Causes leading zeros to appear.

(with o or x) Causes octal and hex items to be preceded by O and Ox, respectively.

(with e, f or g)

it is whole number. Also prevents the truncation of trailing zeros in g-type

conversion.

 Note C99 adds some more format codes. See the Appendix “ C99 Features”.

Enhancing the Readability of Output

Computer outputs are used as information for analysing certain relationships between variables and

for making decisions. Therefore the correctness and clarity of outputs are of utmost importance. While

the correctness depends on the solution procedure, the clarity depends on the way the output is

presented. Following are some of the steps we can take to improve the clarity and hence the readability

and understandability of outputs.

 1. Provide enough blank space between two numbers.

 2. Introduce appropriate headings and variable names in the output.

 3. Print special messages whenever a peculiar condition occurs in the output.

 4. Introduce blank lines between the important sections of the output.

The system usually provides two blank spaces between the numbers. However, this can be

printf(“a = %d\t b = %d”, a, b);

using the statement

printf(“a = %d\n b = %d”, a, b);

Messages and headings can be printed by using the character strings directly in the printf statement.

Examples:

printf(“\n OUTPUT RESULTS \n”);

printf(“Code\t Name\t Age\n”);

printf(“Error in input data\n”);

printf(“Enter your name\n”);

Just Remember

∑ While using getchar function, care should be exercised to clear any unwanted characters in the

input stream.

Programming in ANSI C104

 ∑ Do not forget to include <stdio.h

library.

 ∑ Do not forget to include <ctype.h

library.

 ∑

 ∑ Enclose format control strings in double quotes.

 ∑ Do not forget to use address operator & for basic type variables in the input list of scanf.

 ∑ Use double quotes for character string constants.

 ∑ Use single quotes for single character constants.

 ∑

 ∑ Be aware of the situations where output may be imprecise due to formatting.

 ∑

 ∑ Do not provide any white-space at the end of format string of a scanf statement.

 ∑ Do not forget to close the format string in the scanf or printf statement with double quotes.

 ∑ Using an incorrect conversion code for data type being read or written will result in runtime error.

 ∑ Do not forget the comma after the format string in scanf and printf statements.

 ∑ Not separating read and write arguments is an error.

 ∑ Do not use commas in the format string of a scanf statement.

 ∑ Using an address operator & with a variable in the printf statement will result in runtime error.

Case Studies

1. Inventory Report

Problem: The ABC Electric Company manufactures four consumer products. Their inventory position

on a particular day is given below:

Code Quantity Rate (Rs)

F105 275 575.00

H220 107 99.95

I019 321 215.50

M315 89 725.00

It is required to prepare the inventory report table in the following format:

INVENTORY REPORT

Code Quantity Rate Value

—— —— —— ——

—— —— —— ——

—— —— —— ——

—— —— —— ——

Total Value: ———

The value of each item is given by the product of quantity and rate.

Managing Input and Output Operations 105

Program: The program given in Fig. 4.12 reads the data from the terminal and generates the required

output. The program uses subscripted variables which are discussed in Chapter 7.

 Program

 #define ITEMS 4

 main()

 { /* BEGIN */

 int i, quantity[5];

 float rate[5], value, total_value;

 char code[5][5];

 /* READING VALUES */

 i = 1;

 while (i <= ITEMS)

 {

 printf(“Enter code, quantity, and rate:”);

 scanf(“%s %d %f”, code[i], &quantity[i],&rate[i]);

 i++;

 }

 /*.......Printing of Table and Column Headings.......*/

 printf(“\n\n”);

 printf(“ INVENTORY REPORT \n”);

 printf(“— \n”);

 printf(“ Code Quantity Rate Value \n”);

 printf(“— \n”);

 /*.......Preparation of Inventory Position..........*/

 total_value = 0;

 i = 1;

 while (i <= ITEMS)

 {

 value = quantity[i] * rate[i];

 printf(“%5s %10d %10.2f %e\n”,code[i],quantity[i],

 rate[i],value);

 total_value += value;

 i++;

 }

 /*.......Printing of End of Table..................*/

 printf(“— — — — — — — — — — — — — — — — \n”);

 printf(“ Total Value = %e\n”,total_value);

 printf(“— — — — — — — — — — — — — — — — \n”);

 } /* END */

Programming in ANSI C106

 Output

 Enter code, quantity, and rate:F105 275 575.00

 Enter code, quantity, and rate:H220 107 99.95

 Enter code, quantity, and rate:I019 321 215.50

 Enter code, quantity, and rate:M315 89 725.00

 INVENTORY REPORT

 Code Quantity Rate Value

 F105 275 575.00 1.581250e+005

 H220 107 99.95 1.069465e+004

 I019 321 215.50 6.917550e+004

 M315 89 725.00 6.452500e+004

 Total Value = 3.025202e+005

 Fig. 4.12 Program for inventory report

2. Reliability Graph

Problem: The reliability of an electronic component is given by

reliability (r) = e – l t

where l is the component failure rate per hour and t is the time of operation in hours. A graph is required

to determine the reliability at various operating times, from 0 to 3000 hours. The failure rate l (lambda)

is 0.001.

 Problem

 #include <math.h>

 #define LAMBDA 0.001

 main()

 {

 double t;

 float r;

 int i, R;

 for (i=1; i<=27; ++i)

 {

 printf(“– —”);

 }

 printf(“\n”);

 for (t=0; t<=3000; t+=150)

 {

 r = exp(–LAMBDA*t);

 R = (int)(50*r+0.5);

 printf(“ |”);

 for (i=1; i<=R; ++i)

Managing Input and Output Operations 107

 {

 printf(“*”);

 }

 printf(“#\n”);

 }

 for (i=1; i<3; ++i)

 {

 printf(“ |\n”);

 }

 }

 Output

 – –– ––– ––– ––– ––– ––– ––– ––– – –– – –– – –– – –– – –– ––– –

 |**#

 |***#

 |*************************************#

 |********************************#

 |***************************#

 |************************#

 |********************#

 |*****************#

 |***************#

 |*************#

 |***********#

 |**********#

 |********#

 |*******#

 |******#

 |*****#

 |*****#

 |****#

 |***#

 |***#

 |**#

 Fig. 4.13 Program to draw reliability graph

Program: The program given in Fig. 4.13 produces a shaded graph. The values of t are self-generated

by the for statement

for (t=0; t <= 3000; t = t+150)

in steps of 150. The integer 50 in the statement

R = (int)(50*r+0.5)

is a scale factor which converts r to a large value where an integer is used for plotting the curve.

Remember r is always less than 1.

Programming in ANSI C108

Review Questions

 4.1 State whether the following statements are true or false.

 (b) The C standard function that receives a single character from the keyboard is getchar.

 (c) The getchar cannot be used to read a line of text from the keyboard.

 (d) The input list in a scanf statement can contain one or more variables.

scanf statement, the unused items will be used by the next scanf call in the program.

 (g) Variables form a legal element of the format control string of a printf statement.

 (h) The scanf function cannot be used to read a single character from the keyboard.

sign, if the number is positive.

 (k) The print list in a printf statement can contain function calls.

printed.

 4.2 Fill in the blanks in the following statements.

assigning it to many variable.

scanf to terminate reading at the encounter of

a particular character.

 (h) By default, the real numbers are printed with a precision of _________ decimal places.

 4.3 Distinguish between the following pairs:

 (a) getchar and scanf functions.

 4.4 Write scanf statements to read the following data lists:

 (a) 78 B 45 (b) 123 1.23 45A

 (c) 15-10-2002 (d) 10 TRUE 20

 4.5 State the outputs produced by the following printf statements.

Managing Input and Output Operations 109

 For questions 4.6 to 4.10 assume that the following declarations have been made in the program:

 int year, count;

 float amount, price;

 char code, city[10];

 double root;

 4.6 State errors, if any, in the following input statements.

 4.7 What will be the values stored in the variables year and code when the data

 1988, x

 is keyed in as a response to the following statements:

 4.8 The variables count, price, and city have the following values:

 count <—— 1275

 price <—— –235.74

 city <—— Cambridge

 Show the exact output that the following output statements will produce:

 (d) printf(“%10dxxxx%5.2f”,count, price);

 4.9 State what (if anything) is wrong with each of the following output statements:

 4.10 In response to the input statement

 the following data is keyed in:

 19883745

 What values does the computer assign to the variables year, code, and count?

Programming in ANSI C110

 4.11 How can we use the getchar() function to read multicharac ter strings?

 4.12 How can we use the putchar () function to output multichar acter strings?

 4.13 What is the purpose of scanf() function?

 4.14 Describe the purpose of commonly used conversion characters in a scanf() function.

 4.15 What happens when an input data item contains

 4.16 What is the purpose of print() function?

 4.17 Describe the purpose of commonly used conversion characters in a printf() function.

 4.18 How does a control string in a printf() function differ from the control string in a scanf() function?

 4.19 What happens if an output data item contains

 4.20 How are the unrecognized characters within the control string are interpreted in

 (a) scanf function; and

 (b) printf unction?

Programming Exercises

display the same in the following formats:

 (a) WORD PROCESSING

 (b) WORD

 PROCESSING

 (c) W.P.

 4.2 Write a program to read the values of x and y and print the results of the following expressions in

one lne:

 (a)
x y

x y

+

-
 (b)

x y+

2
 (c) (x+y)(x–y)

 4.3 Write a program to read the following numbers, round them off to the nearest integers and print

out the results in integer form:

 35.7 50.21 – 23.73 – 46.45

bar chart to represent these values using the character *
of the chart, the values may be rounded off to the nearest integer. For example, the value 4.36

should be represented as follows.

 * * * *
 * * * * 4.36

 * * * *
 Note that the actual values are shown at the end of each bar.

 4.5 Write an interactive program to demonstrate the process of multiplication. The program should

ask the user to enter two two-digit integers and print the product of integers as shown below.

Managing Input and Output Operations 111

 45

 ¥ 37

 7 ¥ 45 is 315

 3 ¥ 45 is 135

 Add them 1665

 4.6 Write a program to read three integers from the keyboard using one scanf statement and output

them on one line using:

 (a) three printf statements,

 (b) only one printf

 (c) only one printf

 4.7 Write a program that prints the value 10.45678 in exponential format with the following

 (a) correct to two decimal places;

 (b) correct to four decimal places; and

 (c) correct to eight decimal places.

 (a) correct to two decimal places;

 (c) correct to zero decimal places.

 4.9 Write a program to read the name ANIL KUMAR GUPTA in three parts using the scanf statement

and to display the same in the following format using the printf statement.

 (a) ANIL K. GUPTA

 (b) A.K. GUPTA

 (c) GUPTA A.K.

 4.10 Write a program to read and display the following table of data.

 Name Code Price

 Fan 67831 1234.50

 Motor 450 5786.70

5 DECISION MAKING AND

BRANCHING

Key Terms

Decision-making statements I switch statement I Conditional operator I goto statement I .

5.1 INTRODUCTION

We have seen that a C program is a set of statements which are normally executed sequentially in

the order in which they appear. This happens when no options or no repetitions of certain calculations

are necessary. However, in practice, we have a number of situations where we may have to change

the order of execution of statements based on certain conditions, or repeat a group of statements until

condition has occurred or not and then direct the computer to execute certain statements accordingly.

C language possesses such decision-making capabilities by supporting the following statements:

 1. if statement

 2. switch statement

 3. Conditional operator statement

 4. goto statement

These statements are popularly known as decision-making statements. Since these statements

control statements.

We have already used some of these statements in the earlier examples. Here, we shall discuss their

features, capabilities and applications in more detail.

5.2 DECISION MAKING WITH IF STATEMENT

The if

statements. It is basically a two-way decision statement and is used in conjunction with an expression.

It takes the following form

if (test expression)

the expression (relation or condition) is ‘true’ (or non-zero) or ‘false’ (zero), it transfers the control to a

Decision Making and Branching 113

particular statement. This point of program has two paths

to follow, one for the true condition and the other for the

false condition as shown in Fig. 5.1.

Some examples of decision making, using if statements

are:

 1. if (bank balance is zero)

 borrow money

 2. if (room is dark)

 put on lights

 3. if (code is 1)

 person is male

 4. if (age is more than 55)

 person is retired

The if statement may be implemented in different forms depending on the complexity of conditions

to be tested. The different forms are:

 1. Simple if statement

 2. if.....else statement

 3. Nested if....else statement

 4. else if ladder.

We shall discuss each one of them in the next few section.

 5.3 SIMPLE IF STATEMENT

The general form of a simple if statement is

 if (test expression)

 {

 statement-block;

 }

 statement-x;

The ‘statement-block’ may be a single

statement or a group of statements. If the test

expression is true, the statement-block will be

executed; otherwise the statement-block will

be skipped and the execution will jump to the

statement-x. Remember, when the condition

is true both the statement-block and the

statement-x are executed in sequence. This is

illustrated in Fig. 5.2.

Consider the following segment of a

program that is written for processing of marks

obtained in an entrance examination.

False

True

Entry

test expression
?

Fig. 5.1 Two-way branching

False

statement - x

statement-block

Next statement

True

Entry

test
expression

?

Fig. 5.2 Flowchart of simple if control

Programming in ANSI C114

 if (category == SPORTS)

 {

 marks = marks + bonus_marks;

 }

 printf(“%f”, marks);

The program tests the type of category of the student. If the student belongs to the SPORTS category,

then additional bonus_marks are added to his marks before they are printed. For others, bonus_marks

are not adde.

Program 5.1
The program in Fig. 5.3 reads four values a, b, c, and d from the terminal and

evaluates the ratio of (a+b) to (c–d) and prints the result, if c–d is not equal

to zero.

The program given in Fig. 5.3 has been run for two sets of data to see that the paths function properly.

Ratio = –3.181818

 Program

 main()

 {

 int a, b, c, d;

 float ratio;

 printf(“Enter four integer values\n”);

 scanf(“%d %d %d %d”, &a, &b, &c, &d);

 if (c-d != 0) /* Execute statement block */

 {

 ratio = (float)(a+b)/(float)(c-d);

 printf(“Ratio = %f\n”, ratio);

 }

 }

 Output

 Enter four integer values

 12 23 34 45

 Ratio = -3.181818

 Enter four integer values

 12 23 34 34

 Fig. 5.3 Illustration of simple if statement

Decision Making and Branching 115

The second run has neither produced any results nor any message. During the second run, the value

of (c–d) is equal to zero and therefore, the statements contained in the statement-block are skipped.

Since no other statement follows the statement-block, program stops without producing any output.

Note the use of conversion in the statement evaluating the . This is necessary to avoid

six decimal places. The answer contains a round off error. If we wish to have higher accuracy, we must

use double or long double data type.

The simple if is often used for counting purposes. The Program 5.2 illustrates this.

Program 5.2
The program in Fig. 5.4 counts the number of boys whose weight is less than

50 kg and height is greater than 170 cm.

The program has to test two conditions, one for weight and another for height. This is done using the

compound relation

 if (weight < 50 && height > 170)

This would have been equivalently done using two if statements as follows:

 if (weight < 50)

 if (height > 170)

 count = count +1;

If the value of weight is less than 50, then the following statement is executed, which in turn is

another if statement. This if statement tests height and if the height is greater than 170, then the count

is incremented by 1.

 Program

 main()

 {

 int count, i;

 float weight, height;

 count = 0;

 printf(“Enter weight and height for 10 boys\n”);

 for (i =1; i <= 10; i++)

 {

 scanf(“%f %f”, &weight, &height);

 if (weight < 50 && height > 170)

 count = count + 1;

 }

 printf(“Number of boys with weight < 50 kg\n”);

 printf(“and height > 170 cm = %d\n”, count);

 }

Programming in ANSI C116

 Output

 Enter weight and height for 10 boys

 45 176.5

 55 174.2

 47 168.0

 49 170.7

 54 169.0

 53 170.5

 49 167.0

 48 175.0

 47 167

 51 170

 Number of boys with weight < 50 kg

 and height > 170 cm =3

 Fig. 5.4 Use of if for counting

While designing decision statements, we often come across a situation where the logical NOT

operator is applied to a compound logical expression, like !(x&&y||!z). However, a positive logic is

always easy to read and comprehend than a negative logic. In such cases, we may apply what is

known as rule to make the total expression positive. This rule is as follows:

“Remove the parentheses by applying the NOT operator to every logical expression component,

while complementing the relational operators”

That is,

 x becomes !x

 !x becomes x

 && becomes ||

 || becomes &&

Examples:

!(x && y || !z) becomes !x || !y && z

 !(x < = 0 || !condition) becomes x >0&& condition

5.4 THE IF.....ELSE STATEMENT

The if...else statement is an extension of the simple if statement. The general form is

Decision Making and Branching 117

 If (test expression)

 {

 True-block statement(s)

 }

 else

 {

 False-block statement(s)

 }

 statement-x

If the test expression is true, then the true-block statement(s), immediately following the if statements

are executed; otherwise, the false-block statement(s) are executed. In either case, either true-block

or false-block will be executed, not both. This is illustrated in Fig. 5.5. In both the cases, the control is

transferred subsequently to the statemen-x.

Fig. 5.5 Flowchart of if......else control

Let us consider an example of counting the number of boys and girls in a class. We use code 1 for a

boy and 2 for a girl. The program statement to do this may be written as follows:

 if (code == 1)

 boy = boy + 1;

 if (code == 2)

 girl = girl+1;

Programming in ANSI C118

by 1 and the program continues to the second test. The second test again determines whether the

using the else clause as follows:

 if (code == 1)

 boy = boy + 1;

 else

 girl = girl + 1;

 xxxxxxxxxx

Here, if the code is equal to 1, the statement boy = boy + 1; is executed and the control is transferred

to the statement xxxxxx, after skipping the else part. If the code is not equal to 1, the statement

boy = boy + 1; is skipped and the statement in the else part girl = girl + 1; is executed before the control

reaches the statement xxxxxxxx.

Consider the program given in Fig. 5.3. When the value (c–d) is zero, the ratio is not calculated and

the program stops without any message. In such cases we may not know whether the program stopped

due to a zero value or some other error. This program can be improved by adding the else clause as

follows:

 if (c-d != 0)

 {

 ratio = (float)(a+b)/(float)(c-d);

 printf(“Ratio = %f\n”, ratio);

 }

 else

 printf(“c-d is zero\n”);

Program 5.3 A program to evaluate the power series.

 ex = 1 + x +
x x x

n

n2 2

2 3! ! !
+ + +� , 0 < x < 1

 is given in Fig. 5.6. It uses if......else to test the accuracy.

The power series contains the recurrence relationship of the type

 T
n
 = T

n-1

x

n

Ê
ËÁ

ˆ
¯̃

 for n > 1

Decision Making and Branching 119

 T
1
 = x for n = 1

 T
0
= 1

If T
n-1

(usually known as previous term) is known, then T
n
 (known as present term) can be easily found

by multiplying the previous term by x/n. Then

 ex = T
0
 + T

1
+ T

2
 + + T

n
 = sum

 Program

 #define ACCURACY 0.0001

 main()

 {

 int n, count;

 float x, term, sum;

 printf(“Enter value of x:”);

 scanf(“%f”, &x);

 n = term = sum = count = 1;

 while (n <= 100)

 {

 term = term * x/n;

 sum = sum + term;

 count = count + 1;

 if (term < ACCURACY)

 n = 999;

 else

 n = n + 1;

 }

 printf(“Terms = %d Sum = %f\n”, count, sum);

 }

 Output

 Enter value of x:0

 Terms = 2 Sum = 1.000000

 Enter value of x:0.1

 Terms = 5 Sum = 1.105171

 Enter value of x:0.5

 Terms = 7 Sum = 1.648720

 Enter value of x:0.75

 Terms = 8 Sum = 2.116997

 Enter value of x:0.99

 Terms = 9 Sum = 2.691232

 Enter value of x:1

 Terms = 9 Sum = 2.718279

 Fig. 5.6 Illustration of if...else statement

Programming in ANSI C120

The program uses count to count the number of terms added. The program stops when the value of

the term is less than 0.0001 (ACCURACY). Note that when a term is less than ACCURACY, the value

of n is set equal to 999 (a number higher than 100) and therefore the while loop terminates. The results

are printed outside the while loop.

5.5 NESTING OF IF....ELSE STATEMENTS

When a series of decisions are involved, we may have to use more than one if...else statement in

nested form as shown below:

The logic of execution is illustrated in Fig. 5.7. If the condition-1 is false, the statement-3 will be

executed; otherwise it continues to perform the second test. If the condition-2 is true,

(test condition-1)

if (test condition-2);

statement -1;

statement -2;

statement -3;

statement -x;

else

else

if

the statement-1 will be evaluated; otherwise the statement-2 will be evaluated and then the control is

transferred to the statemet-x.

A commercial bank has introduced an incentive policy of giving bonus to all its deposit holders. The

policy is as follows: A bonus of 2 per cent of the balance held on 31st December is given to every one,

irrespective of their balance, and 5 per cent is given to female account holders if their balance is more

than Rs. 5000. This logic can be coded as follows:

 if (sex is female)
 {
 if (balance > 5000)
 bonus = 0.05 * balance;
 else

 bonus = 0.02 * balance;
 }
 else

 {
 bonus = 0.02 * balance;
 }
 balance = balance + bonus;

Decision Making and Branching 121

When nesting, care should be exercised to match every if with an else. Consider the following

 if (sex is female)

 if (balance > 5000)

 bonus = 0.05 * balance;

 else

 bonus = 0.02 * balance;

 balance = balance + bonus;

There is an ambiguity as to over which if the else belongs to. In C, an else is linked to the closest

non-terminated if. Therefore, the else is associated with the inner if and there is no else option for the

outer if. This means that the computer is trying to execute the statement

balance = balance + bonus;

without really calculating the bonus for the male account holders.

Fig. 5.7 Flow chart of nested if…else statements

Programming in ANSI C122

Consider another alternative, which also looks correct:

 if (sex is female)

 {

 if (balance > 5000)

 bonus = 0.05 * balance;

 }

 else

 bonus = 0.02 * balance;

 balance = balance + bonus;

In this case, else is associated with the outer if and therefore bonus is calculated for the male

account holders. However, bonus for the female account holders, whose balance is equal to or less than

5000 is not calculated because of the missing else option for the inner if.

Program 5.4
 The program in Fig. 5.8 selects and prints the largest of the three numbers

using nested if....else statements.

 Program

 main()
 {
 float A, B, C;
 printf(“Enter three values\n”);
 scanf(“%f %f %f”, &A, &B, &C);
 printf(“\nLargest value is “);
 if (A>B)
 {
 if (A>C)
 printf(“%f\n”, A);
 else
 printf(“%f\n”, C);
 }
 else
 {
 if (C>B)
 printf(“%f\n”, C);
 else
 printf(“%f\n”, B);
 }
 }

 Output

 Enter three values
 23445 67379 88843
 Largest value is 88843.000000

Fig. 5.8 Selecting the largest of three numbers

Decision Making and Branching 123

One of the classic problems encountered when we start using nested if….else statements is the

dangling else. This occurs when a matching else is not available for an if. The answer to this problem

is very simple. Always match an else to the most recent unmatched if in the current block. In some

cases, it is possible that the false condition is not required. In such situations, else statement may

be omitted

 “else is always paired with the most recent unpaired if”

5.6 THE ELSE IF LADDER

There is another way of putting ifs together when multipath decisions are involved. A multipath decision

is a chain of ifs in which the statement associated with each else is an if. It takes the following general

form:

if (condition 1)

else if (condition 2)

else if (condition 3)

else if (condition n)

else

statement-1;

statement-2;

statement-3;

statement-n;

default-statement;

statement-x;

This construct is known as the else if ladder. The conditions are evaluated from the top (of the ladder),

downwards. As soon as a true condition is found, the statement associated with it is executed and the

control is transferred to the statement-x (skipping the rest of the ladder). When all the n conditions

else containing the default-statement will be executed. Fig. 5.9 shows the

logic of execution of else if ladder statements.

Let us consider an example of grading the students in an academic institution. The grading is done

according to the following rules:

 80 to 100 Honours

 60 to 79 First Division

 50 to 59 Second Division

 40 to 49 Third Division

 0 to 39 Fail

Programming in ANSI C124

This grading can be done using the else if ladder as follows:

 if (marks > 79)

 grade = “Honours”;

 else if (marks > 59)

 grade = “First Division”;

 else if (marks > 49)

 grade = “Second Division”;

 else if (marks > 39)

 grade = “Third Division”;

 else

 grade = “Fail”;

 printf (“%s\n”, grade);

Consider another example given below:

 — — — —

 — — — —

 if (code == 1)

 colour = “RED”;

 else if (code == 2)

 colour = “GREEN”;

 else if (code == 3)

 colour = “WHITE”;

 else

 colour = “YELLOW”;

 — — —

 — — —

Code numbers other than 1, 2 or 3 are considered to represent YELLOW colour. The same results

can be obtained by using nested if...else statements.

 if (code != 1)

 if (code != 2)

 if (code != 3)

 colour = “YELLOW”;

 else

 colour = “WHITE”;

 else

 colour = “GREEN”;

 else

 colour = “RED”;

In such situations, the choice is left to the programmer. However, in order to choose an if structure

of an if statement and the rules governing their nesting.

Decision Making and Branching 125

Program 5.5
An electric power distribution company charges its domestic consumers as

follows:

 Consumption Units Rate of Charge

 0 – 200 Rs. 0.50 per unit

 201 – 400 Rs. 100 plus Rs. 0.65 per unit excess of 200

 401 – 600 Rs. 230 plus Rs. 0.80 per unit excess of 400

 601 and above Rs. 390 plus Rs. 1.00 per unit excess of 600

The program in Fig. 5.10 reads the customer number and power consumed and prints the amount

to be paid by the customer.

 Program

 main()

 {

 int units, custnum;

 float charges;

 printf(“Enter CUSTOMER NO. and UNITS consumed\n”);

statement - x

next statement

False

False

False

False

True

True

True

True

Entry

Condition-1

Condition-2

Condition-3

Condition-n

statement-2

statement-3

statement-n default
statement

statement-1

Fig. 5.9 Flow chart of else..if ladder

Programming in ANSI C126

 scanf(“%d %d”, &custnum, &units);

 if (units <= 200)

 charges = 0.5 * units;

 else if (units <= 400)

 charges = 100 + 0.65 * (units - 200);

 else if (units <= 600)

 charges = 230 + 0.8 * (units - 400);

 else

 charges = 390 + (units - 600);

 printf(“\n\nCustomer No: %d: Charges = %.2f\n”,

 custnum, charges);

 }

 Output

 Enter CUSTOMER NO. and UNITS consumed 101 150

 Customer No:101 Charges = 75.00

 Enter CUSTOMER NO. and UNITS consumed 202 225

 Customer No:202 Charges = 116.25

 Enter CUSTOMER NO. and UNITS consumed 303 375

 Customer No:303 Charges = 213.75

 Enter CUSTOMER NO. and UNITS consumed 404 520

 Customer No:404 Charges = 326.00

 Enter CUSTOMER NO. and UNITS consumed 505 625

 Customer No:505 Charges = 415.00

 Fig. 5.10 Illustration of else..if ladder

When using control structures, a statement often controls many other statements that follow it. In

such situations it is a good practice to use indentation to show that the indented statements are

dependent on the preceding controlling statement. Some guidelines that could be followed while

using indentation are listed below:

 ∑ Indent statements that are dependent on the previous statements; provide at least three spaces

of indentation.

 ∑ Align vertically else clause with their matching if clause.

 ∑ Use braces on separate lines to identify a block of statements.

 ∑ Indent the statements in the block by at least three spaces to the right of the braces.

 ∑ Align the opening and closing braces.

 ∑ Use appropriate comments to signify the beginning and end of blocks.

 ∑ Indent the nested statements as per the above rules.

 ∑ Code only one clause or statement on each line.

Decision Making and Branching 127

 5.7 THE SWITCH STATEMENT

We have seen that when one of the many alternatives is to be selected, we can use an if statement

to control the selection. However, the complexity of such a program increases dramatically when the

confuse even the person who designed it. Fortunately, C has a built-in multiway decision statement

known as a switch. The switch statement tests the value of a given variable (or expression) against

a list of values and when a match is found, a block of statements associated with that is

executed. The general form of the switch statement is as shown below:

 switch (expression)

 {

 case value-1:

 block-1

 break;

 case value-2:

 block-2

 break;

 default:

 default-block

 break;

 }

 statement-x;

The expression is an integer expression or characters. Value-1, value-2 are constants or constant

expressions (evaluable to an integral constant) and are known as case labels. Each of these values

should be unique within a switch statement. are statement lists and may contain

zero or more statements. There is no need to put braces around these blocks. Note that labels

end with a colon (:).

When the switch is executed, the value of the expression is successfully compared against the

values value-1, value-2,.... If a case is found whose value matches with the value of the expression, then

the block of statements that follows the case are executed.

The statement at the end of each block signals the end of a particular case and causes an exit

from the switch statement, transferring the control to the following the switch.

The is an optional case. When present, it will be executed if the value of the expression does

not match with any of the case values. If not present, no action takes place if all matches fail and the

control goes to the . (ANSI C permits the use of as many as 257 case labels).

The selection process of switch

Programming in ANSI C128

Entry

statement-x

switch
expression

Expression = value-1 block1

block2

default
block

Expression = value-2

(no match) default

Fig. 5.11 Selection process of the switch statement

The switch statement can be used to grade the students as discussed in the last section. This is

illustrated below:

 — — —
 — — —
 index = marks/10

 switch (index)

 {
 case 10:

 case 9:

 case 8:

 grade = “Honours”;
 break;
 case 7:

 case 6:

 grade = “First Division”;
 break;
 case 5:

 grade = “Second Division”;
 break;
 case 4:

 grade = “Third Division”;
 break;
 default:

 grade = “Fail”;
 break;
 }
 printf(“%s\n”, grade);

 — — —
 — — —

Decision Making and Branching 129

Note that we have used a conversion statement

index = marks / 10;

 100 10

 90 - 99 9

 80 - 89 8

 70 - 79 7

 60 - 69 6

 50 - 59 5

 40 - 49 4

 . .

 . .

 0 0

three cases will execute the same statements

Same is the case with case 7 and case 6. Second, default condition is used for all other cases where

marks is less than 40.

The switch statement is often used for menu selection. For example:

 — — — —
 — — — —
 printf(“ TRAVEL GUIDE\n\n”);
 printf(“ A Air Timings\n”);
 printf(“ T Train Timings\n”);
 printf(“ B Bus Service\n”);
 printf(“ X To skip\n”);
 printf(“\n Enter your choice\n”);
 character = getchar();
 switch (character)
 {
 case ‘A’ :
 air-display();
 break;
 case ‘B’ :
 bus-display();
 break;
 case ‘T’ :
 train-display();
 break;
 default :
 printf(“ No choice\n”);
 }
 — — — —
 — — — —

Programming in ANSI C130

It is possible to nest the switch statements. That is, a switch may be part of a statement. ANSI

C permits 15 levels of nesting.

 ∑ The switch expression must be an integral type.

 ∑ Case labels must be constants or constant expressions.

 ∑ Case labels must be unique. No two labels can have the same value.

 ∑ Case labels must end with colon.

 ∑ The statement transfers the control out of the switch statement.

 ∑ The statement is optional. That is, two or more case labels may belong to the same

statements.

 ∑ The

a matching case label.

 ∑ There can be at most one label.

 ∑ The may be placed anywhere but usually placed at the end.

 ∑ It is permitted to nest switch statements.

Program 5.6
Write a complete C program that reads a value in the range of 1 to 12 and

print the name of that month and the next month. Print error for any other

input value.

 Program

 #include<stdio.h>

 #include<conio.h>

 #include<stdlib.h>

 void main()

 {

 char month[12][20] = {“January”,”February”,”March”,”April”,”May”,”June”,

 ”July”,”August”,”September”,”October”,”November”,”December”};

 int i;

 printf(“Enter the month value: ”);

 scanf(“%d”,&i);

 if(i<1 || i>12)

 {

 printf(“Incorrect value!!\nPress any key to terminate the program...”);

 getch();

 exit(0);

 }

 if(i!=12)

 printf(“%s followed by %s”,month[i-1],month[i]);

Decision Making and Branching 131

 else

 printf(“%s followed by %s”,month[i-1],month[0]);

 getch();

 }

 Output

 Enter the month value: 6

 June followed by July

 Fig. 5.12 Program to read and print name of months in the range of 1 and 12

5.8 THE ? : OPERATOR

The C language has an unusual operator, useful for making two-way decisions. This operator is a

combination of ? and :, and takes three operands. This operator is popularly known as the conditional

operator. The general form of use of the conditional operator is as follows:

conditional expression ? expression1 : expression2

The conditional expression expression1 is evaluated and

is returned as the value of the conditional expression. Otherwise, expression2 is evaluated and its value

is returned. For example, the segment

 if (x < 0)

 flag = 0;

 else

 flag = 1;

can be written as

flag = (x < 0) ? 0 : 1;

Consider the evaluation of the following function:

 y = 1.5x + 3 for x £ 2

 y = 2x + 5 for x > 2

This can be evaluated using the conditional operator as follows:

 y = (x > 2) ? (2 * x + 5) : (1.5 * x + 3);

The conditional operator may be nested for evaluating more complex assignment decisions. For

number of products sold in a week, her weekly salary is given by

 Salary =

4 100 40

300 40

4 5 150 40

x for x

for x

x for x

+ <
=

+ <

Ï

Ì
Ô

Ó
Ô .

This complex equation can be written as

 salary = (x != 40) ? ((x < 40) ? (4*x+100) : (4.5*x+150)) : 300;

Programming in ANSI C132

The same can be evaluated using if...else statements as follows:

 if (x <= 40)

 if (x < 40)

 salary = 4 * x+100;

 else

 salary = 300;

 else

 salary = 4.5 * x+150;

However, the readability is poor. It is better to use if statements when more than a single nesting of

conditional operator is required.

Program 5.7
An employee can apply for a loan at the beginning of every six months, but

he will be sanctioned the amount according to the following company rules:

Rule 1 : An employee cannot enjoy more than two loans at any point of time.

Rule 2 : Maximum permissible total loan is limited and depends upon the category of the employee.

 A program to process loan applications and to sanction loans is given in Fig. 5.13.

 Program

 #define MAXLOAN 50000

 main()

 {

 long int loan1, loan2, loan3, sancloan, sum23;

 printf(“Enter the values of previous two loans:\n”);

 scanf(“ %ld %ld”, &loan1, &loan2);

 printf(“\nEnter the value of new loan:\n”);

 scanf(“ %ld”, &loan3);

 sum23 = loan2 + loan3;

 sancloan = (loan1>0)? 0 : ((sum23>MAXLOAN)?

 MAXLOAN - loan2 : loan3);

 printf(“\n\n”);

 printf(“Previous loans pending:\n%ld %ld\n”,loan1,loan2);

 printf(“Loan requested = %ld\n”, loan3);

 printf(“Loan sanctioned = %ld\n”, sancloan);

 }

 Output

 Enter the values of previous two loans:

 0 20000

 Enter the value of new loan:

 45000

Decision Making and Branching 133

 Previous loans pending:

 0 20000

 Loan requested = 45000

 Loan sanctioned = 30000

 Enter the values of previous two loans:

 1000 15000

 Enter the value of new loan:

 25000

 Previous loans pending:

 1000 15000

 Loan requested = 25000

 Loan sanctioned = 0

 Fig. 5.13 Illustration of the conditional operator

The program uses the following variables:

 - present loan amount requested

- previous loan amount pending

 - previous to previous loan pending

sum23 - sum of loan2 and loan3

 - loan sanctioned

The rules for sanctioning new loan are:

 1. loan1 should be zero.

 2. loan2 + loan3 should not be more than MAXLOAN.

Note the use of long int type to declare variables.

Program 5.8
Write a program to determine the Greatest Common Divisor (GCD) of two

numbers.

 Algorithm

 Step 1 – Start

 Step 2 – Accept the two numbers whose GCD is to be found (num1, num2)

 Step 3 – Call function GCD(num1,num2)

 Step 4 – Display the value returned by the function call GCD(num1, num2)

 Step 5 – Stop

 GCD(a,b)

 Step 1 – Start

 Step 2 – If b > a goto Step 3 else goto Step 4

 Step 3 – Return the result of the function call GCD(b,a) to the calling function

 Step 4 – If b = 0 goto Step 5 else goto Step 6

 Step 5 – Return the value a to the calling function

 Step 6 – Return thFCe result of the function call GCD(b,a mod b) to the calling function

Programming in ANSI C134

 Flowchart

 Program

 #include <stdio.h>

 #include <conio.h>

 #include <math.h>

 int GCD(int m, int n);

 void main()

Start

Read num1,.num2

Call GCD (num1, num2)

Stop

Display the return value of
GCD (num1, num2)

GCD (num1, num2)

Return
GCD (b, a%b)

Is b>a?

No

Is b=a? Return a

Return
GCD (b, a)

Yes

Yes

No

 {

 int num1,num2;

 clrscr();

 printf(“Enter the two numbers whose GCD is to be found: “);

 scanf(“%d %d”,&num1,&num2);

 printf(“\nGCD of %d and %d is %d\n”,num1,num2,GCD(num1,num2));

 getch();

 }

 int GCD(int a, int b)

 {

 if(b>a)

 return GCD(b,a);

 if(b==0)

 return a;

 else

 return GCD(b,a%b);

 }

Decision Making and Branching 135

 Output

 Enter the two numbers whose GCD is to be found: 18 12

 GCD of 18 and 12 is 6

 Fig. 5.14 Program to determine GCD of two numbers

Some Guidelines for Writing Multiway Selection Statements

Complex multiway selection statements require special attention. The readers should be able to

understand the logic easily. Given below are some guidelines that would help improve readability

and facilitate maintenance.

 ∑ Avoid compound negative statements. Use positive statements wherever possible.

 ∑ Keep logical expressions simple. We can achieve this using nested if statements, if necessary

(KISS - Keep It Simple and Short).

 ∑
 ∑

 ∑ The choice between the nested if and switch statements is a matter of individual’s preference.

A good rule of thumb is to use the switch when alter-native paths are three to ten.

 ∑ Use proper indentations (See Rules for Indentation).

 ∑ Have the habit of using default clause in switch statements.

 ∑ Group the case labels that have similar actions.

5.9 THE GOTO STATEMENT

Like many other languages, C supports the goto statement to branch unconditionally from one point to

another in the program. Although it may not be essential to use the goto statement in a highly structured

language like C, there may be occasions when the use of goto might be desirable.

The goto requires a label in order to identify the place where the branch is to be made. A label is

any valid variable name, and must be followed by a colon. The label is placed immediately before the

statement where the control is to be transferred. The general forms of goto and label statements are

shown below:

goto label;

goto label;

label:
statement;

Forward jump Backward jump

label:
statement;

Programming in ANSI C136

The label: can be anywhere in the program either before or after the goto label; statement.

During running of a program when a statement like

goto begin;

begin:. This happens

unconditionally.

Note that a goto breaks the normal sequential execution of the program. If the label: is before the

statement goto label; a loop will be formed and some statements will be executed repeatedly. Such a

jump is known as a backward jump. On the other hand, if the label: is placed after the goto label; some

statements will be skipped and the jump is known as a forward jump.

A goto is often used at the end of a program to direct the control to go to the input statement, to read

further data. Consider the following example:

 main()

 {

 double x, y;

 read:

 scanf(“%f”, &x);

 if (x < 0) goto read;

 y = sqrt(x);

 printf(“%f %f\n”, x, y);

 goto read;

 }

This program is written to evaluate the square root of a series of numbers read from the terminal.

The program uses two goto statements, one at the end, after printing the results to transfer the control

back to the input statement and the other to skip any further computation when the number is negative.

Due to the unconditional goto statement at the end, the control is always transferred back to the input

statement. In fact, this program puts the computer in a permanent loop known as an . The

Program 5.9
Program presented in Fig. 5.15 illustrates the use of the goto statement.

keeps the count of numbers read. When count is less than or equal to 5,

; directs the control to the label ; otherwise, the program

prints a message and stops.

 Program

 #include <math.h>

 main()

 {

 double x, y;

 int count;

 count = 1;

 printf(“Enter FIVE real values in a LINE \n”);

 read:

 scanf(“%lf”, &x);

Decision Making and Branching 137

 printf(“\n”);

 if (x < 0)

 printf(“Value - %d is negative\n”,count);

 else

 {

 y = sqrt(x);

 printf(“%lf\t %lf\n”, x, y);

 }

 count = count + 1;

 if (count <= 5)

 goto read;

 printf(“\nEnd of computation”);

 }

 Output

 Enter FIVE real values in a LINE

 50.70 40 -36 75 11.25

 50.750000 7.123903

 40.000000 6.324555

 Value -3 is negative

 75.000000 8.660254

 11.250000 3.354102

 End of computation

 Fig. 5.15 Use of the goto statement

Another use of the goto statement is to transfer the control out of a loop (or nested loops) when

certain peculiar conditions are encountered. Example:

 — — — —

 — — — —

 while (— — — —)

 {

 for (— — — —)

 {

 — — — —

 — — — —

 if (— — — —)goto end_of_program;

 — — — —

 } Jumping

 — — — — out of

 — — — — loops

 }

 end_of_program:

We should try to avoid using goto as far as possible. But there is nothing wrong, if we use it to

enhance the readability of the program or to improve the execution speed.

Programming in ANSI C138

Just Remember

 ∑ Be aware of dangling else statements.

 ∑ Be aware of any side effects in the control expression such as if(x++).

 ∑ Use braces to encapsulate the statements in if and else clauses of an if…. else statement.

 ∑ Check the use of =operator in place of the equal operator = =.

 ∑ Do not give any spaces between the two symbols of relational operators = =, !=, >= and <=.

 ∑ Writing !=, >= and <= operators like =!, => and =< is an error.

 ∑ Remember to use two ampersands (&&) and two bars (| ||) for logical operators. Use of single

operators will result in logical errors.

 ∑ Do not forget to place parentheses for the if expression.

 ∑ It is an error to place a semicolon after the if expression.

 ∑
equal.

 ∑ Do not forget to use a break statement when the cases in a switch statement are exclusive.

 ∑ Although it is optional, it is a good programming practice to use the default clause in a switch

statement.

 ∑ It is an error to use a variable as the value in a case label of a switch statement. (Only integral

constants are allowed.)

 ∑ Do not use the same constant in two case labels in a switch statement.

 ∑ Avoid using operands that have side effects in a logical binary expression such as (x– –&&++y).

The second operand may not be evaluated at all.

 ∑ Try to use simple logical expressions.

Problem: A survey of the computer market shows that personal computers are sold at varying costs by

the vendors. The following is the list of costs (in hundreds) quoted by some vendors:

 35.00, 40.50, 25.00, 31.25, 68.15,

 47.00, 26.65, 29.00 53.45, 62.50

Determine the average cost and the range of values.

Problem analysis: Range is one of the measures of dispersion used in statistical analysis of a series

of values. The range of any series is the difference between the highest and the lowest values in the

series. That is

 Range = highest value – lowest value

Program: A program to determine the range of values and the average cost of a personal computer in

the market is given in Fig. 5.16.

Decision Making and Branching 139

 Program

 main()

 {

 int count;

 float value, high, low, sum, average, range;

 sum = 0;

 count = 0;

 printf(“Enter numbers in a line :

 input a NEGATIVE number to end\n”);

 input:

 scanf(“%f”, &value);

 if (value < 0) goto output;

 count = count + 1;

 if (count == 1)

 high = low = value;

 else if (value > high)

 high = value;

 else if (value < low)

 low = value;

 sum = sum + value;

 goto input;

 Output:

 average = sum/count;

 range = high - low;

 printf(“\n\n”);

 printf(“Total values : %d\n”, count);

 printf(“Highest-value: %f\nLowest-value : %f\n”,

 high, low);

 printf(“Range : %f\nAverage : %f\n”,

 range, average);

 }

 Output

 Enter numbers in a line : input a NEGATIVE number to end

 35 40.50 25 31.25 68.15 47 26.65 29 53.45 62.50 -1

 Total values : 10

 Highest-value : 68.150002

 Lowest-value : 25.000000

 Range : 43.150002

 Average : 41.849998

 Fig. 5.16 Calculation of range of values

Programming in ANSI C140

high and low, through the

statement

high = low = value;

For subsequent values, the value read is compared with high; if it is larger, the value is assigned to

high. Otherwise, the value is compared with low; if it is smaller, the value is assigned to low. Note that at

a given point, the buckets high and low hold the highest and the lowest values read so far.

The values are read in an input loop created by the goto input; statement. The control is transferred

out of the loop by inputting a negative number. This is caused by the statement

if (value < 0) goto output;

Note that this program can be written without using goto statements. Try.

Problem:

perks. The levels and corresponding perks are shown below:

Level
Perks

Conveyance allowance Entertainment allowance

1 1000 500

2 750 200

3 500 100

4 250 –

An executive’s gross salary includes basic pay, house rent allowance at 25% of basic pay and other

perks. Income tax is withheld from the salary on a percentage basis as follows:

Gross salary Tax rate

Gross <= 2000 No tax deduction

2000 < Gross <= 4000 3%

4000 < Gross <= 5000 5%

Gross > 5000 8%

Write a program that will read an executive’s job number, level number, and basic pay and then compute the net

salary after withholding income tax.

Problem analysis:

Gross salary = basic pay + house rent allowance + perks

Net salary = Gross salary – income tax.

The computation of perks depends on the level, while the income tax depends on the gross salary.

The major steps are:

 1. Read data.

 2. Decide level number and calculate perks.

 3. Calculate gross salary.

Decision Making and Branching 141

 4. Calculate income tax.

 5. Compute net salary.

 6. Print the results.

Program: A program and the results of the test data are given in Fig. 5.17. Note that the last statement

should be an executable statement. That is, the label stop: cannot be the last line.

 Program

 #define CA1 1000

 #define CA2 750

 #define CA3 500

 #define CA4 250

 #define EA1 500

 #define EA2 200

 #define EA3 100

 #define EA4 0

 main()

 {

 int level, jobnumber;

 float gross,

 basic,

 house_rent,

 perks,

 net,

 incometax;

 input:

 printf(“\nEnter level, job number, and basic pay\n”);

 printf(“Enter 0 (zero) for level to END\n\n”);

 scanf(“%d”, &level);

 if (level == 0) goto stop;

 scanf(“%d %f”, &jobnumber, &basic);

 switch (level)

 {

 case 1:

 perks = CA1 + EA1;

 break;

 case 2:

 perks = CA2 + EA2;

 break;

 case 3:

 perks = CA3 + EA3;

 break;

 case 4:

 perks = CA4 + EA4;

 break;

Programming in ANSI C142

 default:

 printf(“Error in level code\n”);

 goto stop;

 }

 house_rent = 0.25 * basic;

 gross = basic + house_rent + perks;

 if (gross <= 2000)

 incometax = 0;

 else if (gross <= 4000)

 incometax = 0.03 * gross;

 else if (gross <= 5000)

 incometax = 0.05 * gross;

 else

 incometax = 0.08 * gross;

 net = gross - incometax;

 printf(“%d %d %.2f\n”, level, jobnumber, net);

 goto input;

 stop: printf(“\n\nEND OF THE PROGRAM”);

 }

 Output

 Enter level, job number, and basic pay

 Enter 0 (zero) for level to END

 1 1111 4000

 1 1111 5980.00

 Enter level, job number, and basic pay

 Enter 0 (zero) for level to END

 2 2222 3000

 2 2222 4465.00

 Enter level, job number, and basic pay

 Enter 0 (zero) for level to END

 3 3333 2000

 3 3333 3007.00

 Enter level, job number, and basic pay

 Enter 0 (zero) for level to END

 4 4444 1000

 4 4444 1500.00

 Enter level, job number, and basic pay

 Enter 0 (zero) for level to END

 0

 END OF THE PROGRAM

 Fig. 5.17 Pay-bill calculations

Decision Making and Branching 143

Review Questions

 5.1 State whether the following are true or false:

 (a) When if statements are nested, the last else gets associated with the nearest if without an

else.

 (b) One if can have more than one else clause.

 (c) A switch statement can always be replaced by a series of if..else statements.

 (d) A switch expression can be of any type.

 (e) A program stops its execution when a statement is encountered.

 (f) Each expression in the else if must test the same variable.

 (g) Any expression can be used for the if expression.

 (h) Each case label can have only one statement.

 (i) The case is required in the switch statement.

 (j) The predicate !((x >= 10)¦(y = = 5)) is equivalent to (x < 10) && (y !=5).

 5.2 Fill in the blanks in the following statements.

 (a) The _______ operator is true only when both the operands are true.

 (b) Multiway selection can be accomplished using an else if statement or the __________

statement.

 (c) The ______ statement when executed in a switch statement causes immediate exit from

the structure.

 (d) The ternary conditional expression using the operator ?: could be easily coded using

______statement.

 (e) The expression ! (x ! = y) can be replaced by the expression ________.

 5.3 Find errors, if any, in each of the following segments:

 (a) if (x + y = z && y > 0)

 printf(“ “);

 (b) if (code > 1);

 a = b + c

 else

 a = 0

 (c) if (p < 0) || (q < 0)

 printf (“ sign is negative”);

 5.4 The following is a segment of a program:

 x = 1;

 y = 1;

 if (n > 0)

 x = x + 1;

 y = y - 1;

 printf(“ %d %d”, x, y);

 What will be the values of x and y if n assumes a value of (a) 1 and (b) 0.

 5.5 Rewrite each of the following without using compound relations:

 (a) if (grade <= 59 && grade >= 50)

 second = second + 1;

Programming in ANSI C144

 (b) if (number > 100 || number < 0)

 printf(“ Out of range”);

 else

 sum = sum + number;

 (c) if ((M1 > 60 && M2 > 60) || T > 200)

 printf(“ Admitted\n”);

 else

 printf(“ Not admitted\n”);

 5.6 Assuming x = 10, state whether the following logical expressions are true or false.

 (a) x = = 10 && x > 10 && !x (b) x = = 10 || x > 10 && ! x

 (c) x = = 10 && x > 10 || ! x (d) x = = 10 || x > 10 || !x

 5.7 Find errors, if any, in the following switch related statements. Assume that the variables x and y

are of int type and x = 1 and y = 2

 (a) switch (y);

 (b) case 10;

 (c) switch (x + y)

 (d) switch (x) {case 2: y = x + y; break};

 5.8 Simplify the following compound logical expressions

 (a) !(x <=10) (b) !(x = = 10) ||! ((y = = 5) || (z < 0))

 (c) ! ((x +y = = z) && !(z > 5) (d) !((x <=5) && (y = = 10) & & (z < 5))

 5.9 Assuming that x = 5, y = 0, and z = 1 initially, what will be their values after executing the following

code segments?

 (a) if (x && y)

 x = 10;

 else

 y = 10;

 (b) if (x || y || z)

 y = 10;

 else

 z = 0;

 (c) if (x)

 if (y)

 z = 10;

 else

 z = 0;

 (d) if (x = = 0 || x & & y)

 if (!y)

 z = 0;

 else

 y = 1;

 5.10 Assuming that x = 2, y = 1 and z = 0 initially, what will be their values after executing the following

code segments?

Decision Making and Branching 145

 (a) switch (x)

 {

 case 2:

 x = 1;

 y = x + 1;

 case 1:

 x = 0;

 break;

 default:

 x = 1;

 y = 0;

 }

 (b) switch (y)

 {

 case 0:

 x = 0;

 y = 0;

 case 2:

 x = 2;

 z = 2;

 default:

 x = 1;

 y = 2;

 }

 5.11 Find the error, if any, in the following statements:

 (a) if (x > = 10) then

 printf (“\n”) ;

 (b) if x > = 10

 printf (“OK”) ;

 (c) if (x = 10)

 printf (“Good”) ;

 (d) if (x = < 10)

 printf (“Welcome”) ;

 5.12 What is the output of the following program?

 main ()

 {

 int m = 5 ;

 if (m < 3) printf(“%d” , m+1) ;

 else if(m < 5) printf(“%d”, m+2);

 else if(m < 7) printf(“%d”, m+3);

 else printf(“%d”, m+4);

 }

Programming in ANSI C146

 5.13 What is the output of the following program?

 main ()

 {

 int m = 1;

 if (m==1)

 {

 printf (“ Delhi “) ;

 if (m == 2)

 printf(“Chennai”) ;

 else

 printf(“Bangalore”) ;

 }

 else;

 printf(“ END”);

 }

 5.14 What is the output of the following program?

 main()

 {

 int m ;

 for (m = 1; m<5; m++)

 printf(%d\n”, (m%2) ? m : m*2);

 }

 5.15 What is the output of the following program?

 main()

 {

 int m, n, p ;

 for (m = 0; m < 3; m++)

 for (n = 0; n<3; n++)

 for (p = 0; p < 3;; p++)

 if (m + n + p == 2)

 goto print;

 print :

 printf(“%d, %d, %d”, m, n, p);

 }

 5.16 What will be the value of x when the following segment is executed?

 int x = 10, y = 15;

 x = (x<y)? (y+x) : (y-x) ;

 5.17 What will be the output when the following segment is exe cuted?

 int x = 0;

 if (x >= 0)

 if (x > 0)

 printf(“Number is positive”);

Decision Making and Branching 147

 else

 printf(“Number is negative”);

 5.18 What will be the output when the following segment is exe cuted?

 char ch = ‘a’ ;

 switch (ch)

 {

 case ‘a’ :

 printf(“A”) ;

 case‘b’:

 Printf (“B”) ;

 default :

 printf(“ C “) ;

 }

 5.19 What will be the output of the following segment when exe cuted?

 int x = 10, y = 20;

 if((x<y) || (x+5) > 10)

 printf(“%d”, x);

 else

 printf(“%d”, y);

 5.20 What will be output of the following segment when executed?

 int a = 10, b = 5;

 if (a > b)

 {

 if(b > 5)

 printf(“%d”, b);

 }

 else

 printf(“%d”, a);

 5.1 Write a program to determine whether a given number is ‘odd’ or ‘even’ and print the message

 NUMBER IS EVEN

 or

 NUMBER IS ODD

 (a) without using else option, and (b) with else option.

that are divisible by 7.

 5.3 A set of two linear equations with two unknowns x1 and x2 is given below:

 ax
1
 + bx

2
 = m

 cx
1
 + dx

2
 = n

Programming in ANSI C148

 The set has a unique solution

 x1 =
md bn

ad cb

-
-

 x2 =
na mc

ad cb

-
-

 provided the denominator ad – cb is not equal to zero.

 Write a program that will read the values of constants a, b, c, d, m, and n and compute the values of

x
1
 and x

2
. An appropriate message should be printed if ad – cb = 0.

 5.4 Given a list of marks ranging from 0 to 100, write a program to compute and print the number of

students:

 (a) who have obtained more than 80 marks,

 (b) who have obtained more than 60 marks,

 (c) who have obtained more than 40 marks,

 (d) who have obtained 40 or less marks,

 (e) in the range 81 to 100,

 (f) in the range 61 to 80,

 (g) in the range 41 to 60, and

 (h) in the range 0 to 40.

 The program should use a minimum number of if statements.

 5.5 Admission to a professional course is subject to the following conditions:

 (a) Marks in Mathematics >= 60

 (b) Marks in Physics >= 50

 (c) Marks in Chemistry >= 40

 (d) Total in all three subjects >= 200

 or

 Total in Mathematics and Physics >= 150

 Given the marks in the three subjects, write a program to process the applications to list the

eligible candidates.

 5.6 Write a program to print a two-dimensional Square Root Table as shown below, to provide the

square root of any number from 0 to 9.9. For example, the value x will give the square root of 3.2

and y the square root of 3.9.

Square Root Table

Number 0.0 0.1 0.2 0.9

0.0

1.0

2.0

3.0 x y

9.0

Decision Making and Branching 149

 5.7 Shown below is a Floyd’s triangle.

 1

 2 3

 4 5 6

 7 8 9 10

 11 15

 .

 .

 79 91

 (a) Write a program to print this triangle.

 (b) Modify the program to produce the following form of Floyd’s triangle.

 1

 0 1

 1 0 1

 0 1 0 1

 1 0 1 0 1

 5.8 A cloth showroom has announced the following seasonal discounts on purchase of items:

Purchase amount Discount

Mill cloth Handloom items

0 – 100 – 5%

101 – 200 5% 7.5%

201 – 300 7.5% 10.0%

Above 300 10.0% 15.0%

 Write a program using switch and if statements to compute the net amount to be paid by a

customer.

 5.9 Write a program that will read the value of x and evaluate the following function

 y =

1 0

0 0

1 0

for x

for x

for x

<
=

- <

Ï

Ì
Ô

Ó
Ô

 using

 (a) nested if statements,

 (b) else if statements, and

 (c) conditional operator ? :

 5.10 Write a program to compute the real roots of a quadratic equation

 ax2 + bx + c = 0

 The roots are given by the equations

 x
1
 = – b +

b ac

a

2 4

2

-

 x
2
 = – b –

b ac

a

2 4

2

-

Programming in ANSI C150

 The program should request for the values of the constants a, b and c and print the values of x
1

and x
2
. Use the following rules:

 (a) No solution, if both a and b are zero

 (b) There is only one root, if a = 0 (x = –c/b)

 (c) There are no real roots, if b2 – 4 ac is negative

 (d) Otherwise, there are two real roots

 Test your program with appropriate data so that all logical paths are working as per your design.

Incorporate appropriate output messages.

 5.11 Write a program to read three integer values from the keyboard and displays the output stating

that they are the sides of right-angled triangle.

 5.12 An electricity board charges the following rates for the use of electricity:

 For the next 100 units: 90 P per unit

 Beyond 300 units: Rs 1.00 per unit

 All users are charged a minimum of Rs. 100 as meter charge. If the total amount is more than Rs.

400, then an additional surcharge of 15% of total amount is charged.

 Write a program to read the names of users and number of units consumed and print out the

charges with names.

 5.13 Write a program to compute and display the sum of all inte gers that are divisible by 6 but not

divisible by 4 and lie between 0 and 100. The program should also count and display the number

of such values.

 5.14 Write an interactive program that could read a positive integer number and decide whether the

number is a prime number and display the output accordingly.

 Modify the program to count all the prime numbers that lie bet ween 100 and 200.

 NOTE: A prime number is a positive integer that is divisible only by 1 or by itself.

 5.15 Write a program to read a double-type value x that repre sents angle in radians and a character-

type variable T that represents the type of trigonometric function and display the value of

 (a) sin(x), if s or S is assigned to T,

 (b) cos (x), if c or C is assigned to T, and

 (c) tan (x), if t or T is assigned to T

 using (i) if......else statement and (ii) switch statement.

6 DECISION MAKING AND

LOOPING

Key Terms

Program loop I Control statement I while statement I do statement I continue statement I break statement.

6.1 INTRODUCTION

We have seen in the previous chapter that it is possible to execute a segment of a program repeatedly by

introducing a counter and later testing it using the if statement. While this method is quite satisfactory for

all practical purposes, we need to initialize and increment a counter and test its value at an appropriate

place in the program for the completion of the loop. For example, suppose we want to calculate the

sum of squares of all integers between 1 and 10, we can write a program using the if statement as

follows:

sum = 0;
n = 1;
loop:
sum = sum + n*n;

()if n == 10
goto print;

else
n = 10,

n = n+1;
goto loop;

print:

end of loop

L
o
o
p

This program does the following things:

 1. Initializes the variable n.

 2. Computes the square of n and adds it to sum.

 3. Tests the value of n to see whether it is equal to 10 or not. If it is equal to 10, then the program

prints the results.

 4. If n is less than 10, then it is incremented by one and the control goes back to compute the sum

again.

Programming in ANSI C152

The program evaluates the statement

 sum = sum + n*n;

10 times. That is, the loop is executed 10 times. This number can be increased or decreased easily by

modifying the relational expression appropriately in the statement if (n == 10). On such occasions where

the exact number of repetitions are known, there are more convenient methods of looping in C. These

looping capabilities enable us to develop concise programs containing repetitive processes without the

use of goto statements.

In looping, a sequence of statements are executed until some conditions for termination of the loop

program loop therefore consists of two segments, one known as the body of the loop and

the other known as the control statement. The control statement tests certain conditions and then directs

the repeated execution of the statements contained in the body of the loop.

either as the entry-controlled loop or as the exit-controlled loop

these structures. In the entry-controlled loop, the control conditions are tested before the start of the

the case of an exit-controlled loop, the test is performed at the end of the body of the loop and therefore

also known as pre-test and post-test loops respectively.

Fig. 6.1 Loop control structures

The test conditions should be carefully stated in order to perform the desired number of loop

executions. It is assumed that the test condition will eventually transfer the control out of the loop. In

case, due to some reason it does not do so, the control sets up an and the body is executed

over and over again.

 1. Setting and initialization of a condition variable.

 2. Execution of the statements in the loop.

Decision Making and Looping 153

 4. Incrementing or updating the condition variable.

times or to determine whether a particular condition has been met.

The C language provides for three constructs for performing loop operations. They are:

 1. The while statement.

 2. The do statement.

 3. The for statement.

We shall discuss the features and applications of each of these statements in this chapter.

Sentinel Loops

Based on the nature of control variable and the kind of value assigned to it for testing the control

 1. Counter-controlled loops

 2. Sentinel-controlled loops

When we know in advance exactly how many times the loop will be executed, we use a counter-

controlled loop. We use a control variable known as counter. The counter must be initialized, tested

and updated properly for the desired loop operations. The number of times we want to execute the

called .

In a sentinel-controlled loop, a special value called a sentinel value is used to change the loop

control expression from true to false. For example, when reading data we may indicate the “end of

data” by a special value, like –1 and 999. The control variable is called sentinel

controlled loop is often called because the number of repetitions is not

known before the loop begins executing.

6.2 THE WHILE STATEMENT

The simplest of all the looping structures in C is the while statement. We have used while in many of

our earlier programs. The basic format of the while statement is

 while (test condition)

 {

 body of the loop

 }

The while is an entry-controlled loop statement. The test-condition is evaluated and if the condition is

true

evaluated and if it is true, the body is executed once again. This process of repeated execution of the

false and the control is transferred out of the loop.

On exit, the program continues with the statement immediately after the body of the loop.

Programming in ANSI C154

The body of the loop may have one or more statements. The braces are needed only if the body

contains two or more statements. However, it is a good practice to use braces even if the body has only

one statement.

 ========

 sum = 0;

 n = 1; /* Initialization */

 while(n <= 10) /* Testing */

 {

 loop sum = sum + n * n;

 n = n+1; /* Incrementing */

 }

 printf(“sum = %d\n”, sum);

 ========

The body of the loop is executed 10 times for n = 1, 2,, 10, each time adding the square of the

value of n, which is incremented inside the loop. The test condition may also be written as n < 11; the

result would be the same. This is a typical example of counter-controlled loops. The variable n is called

counter or control variable.

while statement, which uses the keyboard input is shown below:

 =========

 character = ‘ ‘ ;

 while (character != ‘Y’)

 character = getchar();

 xxxxxxx;

 =========

First the character is initialized to ‘ ‘. The while statement then begins by testing whether character

is not equal to Y. Since the character was initialized to ‘ ‘, the test is true and the loop statement

character = getchar();

is executed. Each time a letter is keyed in, the test is carried out and the loop statement is executed

until the letter Y is pressed. When Y is pressed, the condition becomes false because character equals

Y, and the loop terminates, thus transferring the control to the statement xxxxxxx;. This is a typical

example of sentinel-controlled loops. The character constant ‘y’ is called sentinel value and the variable

character is the condition variable, which often referred to as the sentinel variable.

Program 6.1

 y = xn

The variable y is initialized to 1 and then multiplied by x, n times using the while loop. The loop

control variable count is initialized outside the loop and incremented inside the loop. When the value of

count becomes greater than n, the control exists the loop.

Decision Making and Looping 155

 Program

 main()

 {

 int count, n;

 float x, y;

 printf(“Enter the values of x and n : “);

 scanf(“%f %d”, &x, &n);

 y = 1.0;

 count = 1; /* Initialisation */

 /* LOOP BEGINs */

 while (count <= n) /* Testing */

 {

 y = y*x;

 count++; /* Incrementing */

 }

 /* END OF LOOP */

 printf(“\nx = %f; n = %d; x to power n = %f\n”,x,n,y);

 }

 Output

 Enter the values of x and n : 2.5 4

 x = 2.500000; n = 4; x to power n = 39.062500

 Enter the values of x and n : 0.5 4

 x = 0.500000; n = 4; x to power n = 0.062500

 Fig. 6.2 Program to compute x to the power n using while loop

6.3 THE DO STATEMENT

The while loop construct that we have discussed in the previous section, makes a test of condition

before the loop is executed. Therefore, the body of the loop may not be executed at all if the condition is

the loop before the test is performed. Such situations can be handled with the help of the do statement.

This takes the form:

 do

 {

 body of the loop

 }

 while (test-condition);

On reaching the do

of the loop, the test-condition in the while statement is evaluated. If the condition is true, the program

Programming in ANSI C156

continues to evaluate the body of the loop once again. This process continues as long as the condition

is true. When the condition becomes false, the loop will be terminated and the control goes to the

statement that appears immediately after the while statement.

Since the test-condition is evaluated at the bottom of the loop, the do...while construct provides an

exit-controlled loop and therefore the body of the loop is always executed at least once.

do...while loop is:

do

printf ("Input a number\n");

loop number = getnum ();

(number > 0);while

This segment of a program reads a number from the keyboard until a zero or a negative number is

keyed in, and assigned to the sentinel variable number.

The test conditions may have compound relations as well. For instance, the statement

while (number > 0 && number < 100);

in the above example would cause the loop to be executed as long as the number keyed in lies between

0 and 100.

Consider another example:

 – – – – – – –

 I = 1; /* Initializing */

 sum = 0;

 do

 {

 sum = sum + I;

 loop I = I+2; /* Incrementing */

 }

 while(sum < 40 || I < 10); /* Testing */

 printf(“%d %d\n”, I, sum);

 – – – – – – –

The loop will be executed as long as one of the two relations is true.

Program 6.2

 1 2 3 4 10

 4 40

 -

 -

 -

 12 120

Decision Making and Looping 157

This program contains two do.... while loops in nested form. The outer loop is controlled by the

variable row and executed 12 times. The inner loop is controlled by the variable column and is executed

10 times, each time the outer loop is executed. That is, the inner loop is executed a total of 120 times,

each time printing a value in the table.

 Program:
 #define COLMAX 10

 #define ROWMAX 12

 main()

 {

 int row,column, y;

 row = 1;

 printf(“ MULTIPLICATION TABLE \n”);

 printf(“– \n”);

 do /*......OUTER LOOP BEGINS........*/

 {

 column = 1;

 do /*.......INNER LOOP BEGINS.......*/

 {

 y = row * column;

 printf(“%4d”, y);

 column = column + 1;

 }

 while (column <= COLMAX); /*... INNER LOOP ENDS ...*/

 printf(“\n”);

 row = row + 1;

 }

 while (row <= ROWMAX);/*..... OUTER LOOP ENDS*/

 printf(“—————————————————————————————————\n”);

 }

 Output

 MULTIPLICATION TABLE

 1 2 3 4 5 6 7 8 9 10

 2 4 6 8 10 12 14 16 18 20

 3 6 9 12 15 18 21 24 27 30

 4 8 12 16 20 24 28 32 36 40

 5 10 15 20 25 30 35 40 45 50

 6 12 18 24 30 36 42 48 54 60

 7 14 21 28 35 42 49 56 63 70

 8 16 24 32 40 48 56 64 72 80

 9 18 27 36 45 54 63 72 81 90

 10 20 30 40 50 60 70 80 90 100

 11 22 33 44 55 66 77 88 99 110

 12 24 36 48 60 72 84 96 108 120

Fig. 6.3 Printing of a multiplication table using do...while loop

Programming in ANSI C158

Notice that the printf of the inner loop does not contain any new line character (\n). This allows the

printing of all row values in one line. The empty printf in the outer loop initiates a new line to print the

next row.

6.4 THE FOR STATEMENT

Simple ‘for’ Loops

The for loop is another entry-controlled loop that provides a more concise loop control structure. The

general form of the for loop is

 for (initialization ; test-condition ; increment)

 {

 body of the loop

 }

The execution of the for statement is as follows:

 1. Initialization of the control variables

count = 0. The variables i and count are known as loop-control variables.

 2. The value of the control variable is tested using the test-condition. The test-condition is a relational

expression, such as i < 10 that determines when the loop will exit. If the condition is true, the body

of the loop is executed; otherwise the loop is terminated and the execution continues with the

statement that immediately follows the loop.

 3. When the body of the loop is executed, the control is transferred back to the for statement

after evaluating the last statement in the loop. Now, the control variable is incremented using an

assignment statement such as i = i+1 and the new value of the control variable is again tested

again executed. This process continues till the value of the control variable fails to satisfy the

test-condition.

 Note C99 enhances the for loop by allowing declaration of variables in the initialization

 permits portion. See the Appendix “C99 Features”.

Consider the following segment of a program:

 for (x = 0 ; x <= 9 ; x = x+1)

 loop {

 printf(“%d”, x);

 }

 printf(“\n”);

This for loop is executed 10 times and prints the digits 0 to 9 in one line. The three sections enclosed

within parentheses must be separated by semicolons. Note that there is no semicolon at the end of the

increment section, x = x+1.

Decision Making and Looping 159

The for statement allows for negative increments. For example, the loop discussed above can be

written as follows:

 for (x = 9 ; x >= 0 ; x = x–1)

 printf(“%d”, x);

 printf(“\n”);

This loop is also executed 10 times, but the output would be from 9 to 0 instead of 0 to 9. Note that

braces are optional when the body of the loop contains only one statement.

Since the conditional test is always performed at the beginning of the loop, the body of the loop may

not be executed at all, if the condition fails at the start. For example,

 for (x = 9; x < 9; x = x-1)

 printf(“%d”, x);

will never be executed because the test condition fails at the very beginning itself.

problem can be coded using the for statement as follows:

 – – – – – – – – – – – – – – – – –

 sum = 0;

 for (n = 1; n <= 10; n = n+1)

 {

 sum = sum+ n*n;

 }

 printf(“sum = %d\n”, sum);

 – – – – – – – – – – – – – – – – –

The body of the loop

sum = sum + n*n;

is executed 10 times for n = 1, 2,, 10 each time incrementing the sum by the square of the value of n.

One of the important points about the for loop is that all the three actions, namely initialization, testing,

and incrementing, are placed in the for statement itself, thus making them visible to the programmers

and users, in one place. The for statement and its equivalent of while and do statements are shown in

Table 6.1 Comparison of the Three Loops

for while do

for (n=1; n<=10; ++n) n = 1; n = 1;

{ while (n<=10) do

 ———— { {

 ———— ———— ————

{ ———— ————

n = n+1; n = n+1;

} }

while(n<=10);

Programming in ANSI C160

Program 6.3
 for loop to print the “Powers of 2” table for the

power 0 to 20, both positive and negative.

 Program

 main()

 {

 long int p;

 int n;

 double q;

 printf(“– \n”);

 printf(“ 2 to power n n 2 to power -n\n”);

 printf(“– \n”);

 p = 1;

 for (n = 0; n < 21 ; ++n) /* LOOP BEGINS */

 {

 if (n == 0)

 p = 1;

 else

 p = p * 2;

 q = 1.0/(double)p ;

 printf(“%10ld %10d %20.12lf\n”, p, n, q);

 } /* LOOP ENDS */

 printf(“– \n”);

 }

 Output

 –

 2 to power n n 2 to power -n

 –

 1 0 1.000000000000

 2 1 0.500000000000

 4 2 0.250000000000

 8 3 0.125000000000

 16 4 0.062500000000

 32 5 0.031250000000

 64 6 0.015625000000

 128 7 0.007812500000

 256 8 0.003906250000

 512 9 0.001953125000

 1024 10 0.000976562500

 2048 11 0.000488281250

 4096 12 0.000244140625

Decision Making and Looping 161

 8192 13 0.000122070313

 16384 14 0.000061035156

 32768 15 0.000030517578

 65536 16 0.000015258789

 131072 17 0.000007629395

 262144 18 0.000003814697

 524288 19 0.000001907349

 1048576 20 0.000000953674
 –

 Fig. 6.4 Program to print ‘Power of 2’ table using for loop

The program evaluates the value

 p = 2 n

successively by multiplying 2 by itself n times.

 q = 2–n =
1

p

Note that we have declared p as a long int and q as a double.

Program 6.4
numbers between 1 and n, where ‘n’ is the value supplied by the user.

Program

 # include <stdio.h>

 # include <conio.h>

 void main()

 {

 int prime (int num):

 int n.i;

 int temp:

 printf(“Enter the value of n: “);

 scanf (”%d”, &n);

 printf(“Prime numbers between 1 and %d are:\n”.n);

 for (i=2; j<=n;i++)

 {

 temp=prime(i);

 if(temp==-99)

 continue;

Programming in ANSI C162

 else

 printf(“%d\t”, i);

 }

 getch();

 }

 int prime (int num)

 {

 int j:

 for (j=2;j<num; j++)

 {

 if(num%j==0)

 return (-99);

 else

 ;

 }

 if (j==num)

 return(num);

 }

 Output Enter the value of n: 20

 Prime numbers between 1 and 20 are:

 2 3 5 7 11 13 17 19

 Fig. 6.5 Program to print all prime numbers between 1 and n

Program 6.5
The program in Fig. 6.6 shows how to write a C program to print nth Fibonacci

number.

Program

 # include <stdio.h>

 # include <conio.h>

 void main()

 {

 int num 1=0, num2=1, n, i, fib;

 clrscr();

 printf(“\n\nEnter the value of n: “);

 scanf (”%d”, &n);

Decision Making and Looping 163

 for (i = 1; i <= n-2; i++)

 {

 fib=num1 + num2;

 num1=num2;

 num2=fib;

 }

 printf(“\nnth fibonacci number (for n = %d) = %d, n,fib);

 getch();

 }

 Fig. 6.6

Additional Features of for Loop

The for loop in C has several capabilities that are not found in other loop constructs. For example, more

than one variable can be initialized at a time in the for statement. The statements

 p = 1;

 for (n=0; n<17; ++n)

can be rewritten as

 for (p=1, n=0; n<17; ++n)

Note that the initialization section has two parts p = 1 and n = 1 separated by a comma.

Like the initialization section, the increment section may also have more than one part. For example,

the loop

 for (n=1, m=50; n<=m; n=n+1, m=m-1)

 {

 p = m/n;

 printf(“%d %d %d\n”, n, m, p);

 }

is perfectly valid. The multiple arguments in the increment section are separated by commas.

The third feature is that the test-condition may have any compound relation and the testing need not

be limited only to the loop control variable. Consider the example below:

 sum = 0;

 for (i = 1; i < 20 && sum < 100; ++i)

 {

 sum = sum+i;

 printf(“%d %d\n”, i, sum);

 }

The loop uses a compound test condition with the counter variable i and sentinel variable sum. The

loop is executed as long as both the conditions i < 20 and sum < 100 are true. The sum is evaluated

inside the loop.

It is also permissible to use expressions in the assignment statements of initialization and increment

sections. For example, a statement of the type

for (x = (m+n)/2; x > 0; x = x/2)

is perfectly valid.

Programming in ANSI C164

for loop is that one or more sections can be omitted, if necessary. Consider

the following statements:

 – – – – – – –

 m = 5;

 for (; m != 100 ;)

 {

 printf(“%d\n”, m);

 m = m+5;

 }

 – – – – – – –

Both the initialization and increment sections are omitted in the for statement. The initialization has

been done before the for statement and the control variable is incremented inside the loop. In such

cases, the sections are left ‘blank’. However, the semicolons separating the sections must remain. If the

test-condition is not present, the for statement sets up an ’ loop. Such loops can be broken using

break or goto statements in the loop.

We can set up time delay loops using the null statement as follows:

 for (j = 1000; j > 0; j = j-1)

 ;

This loop is executed 1000 times without producing any output; it simply causes a time delay. Notice

that the body of the loop contains only a semicolon, known as a null statement. This can also be written

as

 for (j=1000; j > 0; j = j-1)

This implies that the C compiler will not give an error message if we place a semicolon by mistake at

the end of a for statement. The semicolon will be considered as a null statement and the program may

produce some nonsense.

Nesting of for Loops

Nesting of loops, that is, one for statement within another for statement, is allowed in C. For example,

two loops can be nested as follows:

Decision Making and Looping 165

The nesting may continue up to any desired level. The loops should be properly indented so as to

enable the reader to easily determine which statements are contained within each for

using nested for statements as follows:

 – ––––––––––––

 for (row = 1; row <= ROWMAX ; ++row)

 {

 for (column = 1; column <= COLMAX ; ++column)

 {

 y = row * column;

 printf(“%4d”, y);

 }

 printf(“\n”);

 }

 – – – – – – – – – – – – –

The outer loop controls the rows while the inner loop controls the colomns.

Program 6.6
n students take an annual examination in m

read the marks obtained by each student in various subjects and to compute

The program uses two for loops, one for controlling the number of students and the other for controlling

the number of subjects. Since both the number of students and the number of subjects are requested

by the program, the program may be used for a class of any size and any number of subjects.

The outer loop includes three parts:

 1. reading of roll-numbers of students, one after another;

 2. inner loop, where the marks are read and totalled for each student; and

 3. printing of total marks and declaration of grades.

 Program

 #define FIRST 360

 #define SECOND 240

 main()

 {

 int n, m, i, j,

 roll_number, marks, total;

 printf(“Enter number of students and subjects\n”);

 scanf(“%d %d”, &n, &m);

 printf(“\n”);

 for (i = 1; i <= n ; ++i)

 {

Programming in ANSI C166

 printf(“Enter roll_number : “);

 scanf(“%d”, &roll_number);

 total = 0 ;

 printf(“\nEnter marks of %d subjects for ROLL NO %d\n”,

 m,roll_number);

 for (j = 1; j <= m; j++)

 {

 scanf(“%d”, &marks);

 total = total + marks;

 }

 printf(“TOTAL MARKS = %d “, total);

 if (total >= FIRST)

 printf(“(First Division)\n\n”);

 else if (total >= SECOND)

 printf(“(Second Division)\n\n”);

 else

 printf(“(*** F A I L ***)\n\n”);

 }

 }

 Output

 Enter number of students and subjects

 3 6

 Enter roll_number : 8701

 Enter marks of 6 subjects for ROLL NO 8701

 81 75 83 45 61 59

 TOTAL MARKS = 404 (First Division)

 Enter roll_number : 8702

 Enter marks of 6 subjects for ROLL NO 8702

 51 49 55 47 65 41

 TOTAL MARKS = 308 (Second Division)

 Enter roll_number : 8704

 Enter marks of 6 subjects for ROLL NO 8704

 40 19 31 47 39 25
 TOTAL MARKS = 201 (*** F A I L ***)

 Fig. 6.7 Illustration of nested for loops

Decision Making and Looping 167

Program 6.7

 Algorithm

 Step 1 – Start

 Step 2 – Read a value for generating the pyramid (num)

 Step 3 – Set x = 40

 Step 4 – Initialize the looping counter y=0

 Step 5 – Repeat Steps 6-12 while y <= num

 Step 6 – Move to the coordinate position (x, y+1)

 Step 7 – Initialize the looping counter i=0-y

 Step 8 – Repeat Steps 9-10 while i <= y

 Step 9 – Display the absolute value of i, abs(i)

 Step 10 – i = i + 1

 Step 11 – x = x – 3

 Step 12 – y = y + 1

 Step 13 – Stop

 Flowchart

 Program

 #include <stdio.h>

 #include <conio.h>

 void main()

 {

 int num,i,y,x=40;

 clrscr();

 printf(“\nEnter a number for \ngenerating the

 pyramid:\n”);

 scanf(“%d”,&num);

 for(y=0;y<=num;y++)

 {

 gotoxy(x,y+1);

 for(i=0-y;i<=y;i++)

 printf(“%3d”,abs(i));

 x=x-3;

 }

 getch();

 }

 Output

 Enter a number for

 generating the pyramid:

 7

Is i<=y?

Start

Read num

Is
y<= num?

Yes

x = 40
y = 0

gotoxy (x, y + 1)
i = 0 – y

No

x = x – 3

Yes

Display absolute(i)

i = i + 1

Stop

No

Programming in ANSI C168

 0

 1 0 1

 2 1 0 1 2

 3 2 1 0 1 2 3

 4 3 2 1 0 1 2 3 4

 5 4 3 2 1 0 1 2 3 4 5

 6 5 4 3 2 1 0 1 2 3 4 5 6

 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

Fig. 6.8 Program to build a pyramid

Selecting a Loop

 ∑

 ∑ do while

 ∑ for while

 ∑

 ∑ Use for

 ∑ Use while

 ∑

6.5 JUMPS IN LOOPS

jump

jump

Jumping Out of a Loop

break statement or the goto

 break in the switch goto in the if...else

while, do, or for

break

break

break

Decision Making and Looping 169

Since a goto statement can transfer the control to any place in a program, it is useful to provide

goto is to exit from deeply nested loops when an error

break statement would not work here.

while ()

while ()

do

for () for ()

for ()

if(condition) if(condition)

if(error)

if(condition)

(a) (b)

(c) (d)

break; break;

;

break;

break;

Exit
from
loop

Exit
from
loop

Exit
from
loop

Exit
from
inner
loop

 Fig. 6.9 Exiting a loop with break statement

while () for ()

for ()

if(error)if(condition)

if(error)
stop;

error;

error;

stop:

(a) (b)

abc;

abc:

goto

goto
goto

Jump
within
loop

Exit
from
loop

Exit
from
two
loops

 Fig. 6.10 Jumping within and exiting from the loops with goto statement

Programming in ANSI C170

Program 6.8
break statement in a C

program.

The program reads a list of positive values and calculates their average. The for loop is written to read

1000 values. However, if we want the program to calculate the average of any set of values less than

1000, then we must enter a ‘negative’ number after the last value in the list, to mark the end of input.

 Program

 main()

 {

 int m;

 float x, sum, average;

 printf(“This program computes the average of a

 set of numbers\n”);

 printf(“Enter values one after another\n”);

 printf(“Enter a NEGATIVE number at the end.\n\n”);

 sum = 0;

 for (m = 1 ; m < = 1000 ; ++m)

 {

 scanf(“%f”, &x);

 if (x < 0)

 break;

 sum += x ;

 }

 average = sum/(float)(m-1);

 printf(“\n”);

 printf(“Number of values = %d\n”, m-1);

 printf(“Sum = %f\n”, sum);

 printf(“Average = %f\n”, average);

 }

 Output

 This program computes the average of a set of numbers

 Enter values one after another

 Enter a NEGATIVE number at the end.

 21 23 24 22 26 22 -1

 Number of values = 6

 Sum = 138.000000

 Average = 23.000000

 Fig. 6.11 Use of break in a program

Decision Making and Looping 171

Each value, when it is read, is tested to see whether it is a positive number or not. If it is positive, the

value is added to the sum; otherwise, the loop terminates. On exit, the average of the values read is

calculated and the results are printed out.

Program 6.9

1

1- x
 = 1 + x + x2 + x3 + + xn

goto

 statement is used to exit the loop on achieving the desired accuracy.

We have used the for statement to perform the repeated addition of each of the terms in the series.
n reaches the

desired accuracy. The value of n that decides the number of loop operations is not known and therefore

we have decided arbitrarily a value of 100, which may or may not result in the desired level of accuracy.

 Program

 #define LOOP 100

 #define ACCURACY 0.0001

 main()

 {

 int n;

 float x, term, sum;

 printf(“Input value of x : “);

 scanf(“%f”, &x);

 sum = 0 ;

 for (term = 1, n = 1 ; n <= LOOP ; ++n)

 {

 sum += term ;

 if (term <= ACCURACY)

 goto output; /* EXIT FROM THE LOOP */

 term *= x ;

 }

 printf(“\nFINAL VALUE OF N IS NOT SUFFICIENT\n”);

 printf(“TO ACHIEVE DESIRED ACCURACY\n”);

 goto end;

 output:

 printf(“\nEXIT FROM LOOP\n”);

 printf(“Sum = %f; No.of terms = %d\n”, sum, n);

 end:

 ; /* Null Statement */

 }

Programming in ANSI C172

 Output

 Input value of x : .21

 EXIT FROM LOOP

 Sum = 1.265800; No.of terms = 7

 Input value of x : .75

 EXIT FROM LOOP

 Sum = 3.999774; No.of terms = 34

 Input value of x : .99

 FINAL VALUE OF N IS NOT SUFFICIENT

 TO ACHIEVE DESIRED ACCURACY

 Fig. 6.12 Use of goto to exit from a loop

The test of accuracy is made using an if statement and the goto statement exits the loop as soon as

desired accuracy, the program prints an appropriate message.

Note that the break statement is not very convenient to use here. Both the normal exit and the break

exit will transfer the control to the same statement that appears next to the loop. But, in the present

problem, the normal exit prints the message

and the forced exit prints the results of evaluation. Notice the use of a null statement at the end. This is

necessary because a program should not end with a label.

Structured Programming

Structured programming is an approach to the design and development of programs. It is a discipline

of making a program’s logic easy to understand by using only the basic three control structures:

 ∑ Sequence (straight line) structure

 ∑ Selection (branching) structure

 ∑

the selection structure proves to be more convenient in some situations.

The use of structured programming techniques helps ensure well-designed programs that are

easier to write, read, debug and maintain compared to those that are unstructured.

Structured programming discourages the implementation of unconditional branching using

jump statements such as goto, break and continue. In its purest form, structured programming is

synonymous with “goto less programming”.

Do not go to goto statement!

Decision Making and Looping 173

Skipping a Part of a Loop

During the loop operations, it may be necessary to skip a part of the body of the loop under certain

conditions. For example, in processing of applications for some job, we might like to exclude the

processing of data of applicants belonging to a certain category. On reading the category code of an

applicant, a test is made to see whether his application should be considered or not. If it is not to

be considered, the part of the program loop that processes the application details is skipped and the

execution continues with the next loop operation.

Like the break statement, C supports another similar statement called the continue statement.

However, unlike the break which causes the loop to be terminated, the continue, as the name implies,

causes the loop to be continued with the next iteration after skipping any statements in between. The

continue

 continue statement is simply

 continue;

The use of the continue while and do loops, continue

causes the control to go directly to the test-condition and then to continue the iteration process. In the

case of for loop, the increment section of the loop is executed before the test-condition is evaluated.

 while (test-condition) do

 { {

 --------- ---------

 if (---------) if (---------)

 continue; continue;

 --------- ---------

 --------- ---------

 } } while (test-condition);

 (a) (b)

 for (initialization; test condition; increment)

 {

 if (---------)

 continue;

 }

 (c)

 Fig. 6.13 Bypassing and continuing i loops

Program 6.10 continue statement.

The program evaluates the square root of a series of numbers and prints the results. The process stops

when the number 9999 is typed in.

Programming in ANSI C174

In case, the series contains any negative numbers, the process of evaluation of square root should

continue statement is used to achieve this. The program also prints a message saying that the number

is negative and keeps an account of negative numbers.

encountered.

 Program:

 #include <math.h>

 main()

 {

 int count, negative;

 double number, sqroot;

 printf(“Enter 9999 to STOP\n”);

 count = 0 ;

 negative = 0 ;

 while (count < = 100)

 {

 printf(“Enter a number : “);

 scanf(“%lf”, &number);

 if (number == 9999)

 break; /* EXIT FROM THE LOOP */

 if (number < 0)

 {

 printf(“Number is negative\n\n”);

 negative++ ;

 continue; /* SKIP REST OF THE LOOP */

 }

 sqroot = sqrt(number);

 printf(“Number = %lf\n Square root = %lf\n\n”,

 number, sqroot);

 count++ ;

 }

 printf(“Number of items done = %d\n”, count);

 printf(“\n\nNegative items = %d\n”, negative);

 printf(“END OF DATA\n”);

 }

 Output

 Enter 9999 to STOP

 Enter a number : 25.0

 Number = 25.000000

 Square root = 5.000000

 Enter a number : 40.5

Decision Making and Looping 175

 Number = 40.500000

 Square root = 6.363961

 Enter a number : -9

 Number is negative

 Enter a number : 16

 Number = 16.000000

 Square root = 4.000000

 Enter a number : -14.75

 Number is negative

 Enter a number : 80

 Number = 80.000000

 Square root = 8.944272

 Enter a number : 9999

 Number of items done = 4

 Negative items = 2

 END OF DATA

 Fig. 6.14 Use of continue statement

Avoiding goto

goto. There are many reasons for this. When

goto

program logic complicated and renders the program unreadable. It is possible to avoid using goto by

careful program design. In case any goto is absolutely necessary, it should be documented. The goto

Fig. 6.15 goto jumps to be ovoided

Jumping out of the Program

We have just seen that we can jump out of a loop using either the break statement or goto statement.

In a similar way, we can jump out of a program by using the library function exit(). In case, due to some

reason, we wish to break out of a program and return to the operating system, we can use the exit()

function, as shown below:

Programming in ANSI C176

 if (test-condition) exit(0) ;

The exit() function takes an integer value as its argument. Normally zero is used to indicate normal

termination and a nonzero value to indicate termination due to some error or abnormal condition. The

use of exit() <stdlib.h>.

6.6 CONCISE TEST EXPRESSIONS

We often use test expressions in the if, for, while and do statements that are evaluated and compared

with zero for making branching decisions. Since every integer expression has a true/false value, we

need not make explicit comparisons with zero. For instance, the expression x is true whenever x is not

any relational operators.

 if (expression ==0)

is equivalent to

 if(!expression)

Similarly,

 if (expression! = 0)

is equivalent to

 if (expression)

For example,

if (m%5==0 && n%5==0) is same as if (!(m%5)&&!(n%5))

Just Remember

 ∑ Do not forget to place the semicolon at the end of do ….while statement.

∑ Placing a semicolon after the control expression in a while or for statement is not a syntax error

but it is most likely a logic error.

∑ Using commas rather than semicolon in the header of a for statement is an error.

∑ Do not forget to place the increment statement in the body of a while or do…while loop.

∑ It is a common error to use wrong relational operator in test expressions. Ensure that the loop is

evaluated exactly the required number of times.

∑

∑ Do not change the control variable in both the for statement and the body of the loop. It is a logic

error.

∑

∑ while and for statements for implementing exit-controlled (post-test) loops. Use

do…while statement. Similarly, do not use do…while for pre-test loops.

∑ When performing an operation on a variable repeatedly in the body of a loop, make sure that the

variable is initialized properly before entering the loop.

Decision Making and Looping 177

∑

header of a for statement, avoid them as far as possible.

∑

aware of round off and truncation errors during their evaluation.

∑ for and statements in the body can be placed in the for header,

∑ The use of break and continue statements in any of the loops is considered unstructured

programming. Try to eliminate the use of these jump statements, as far as possible.

∑ goto anywhere in the program.

∑ Indent the statements in the body of loops properly to enhance readability and understandability.

∑ Use of blank spaces before and after the loops and terminating remarks are highly recommended.

 ∑ Use the function exit() only when breaking out of a program is necessary.

Case Studies

Problem:

multicomponent redundant systems. It is given by

 B(m,x) = (
m

x
) =

m

x m x

!

!()!-
, m >= x

Problem Analysis:

 B(m,o) = 1

 B(m,x) = B(m,x–1)
m x

x

- +È

Î
Í

˘

˚
˙

1
, x = 1,2,3,...,m

Further,

 B(o,o) = 1

do loop and one while

loop.

 Program

 #define MAX 10

 main()

 {

 int m, x, binom;

 printf(“ m x”);

 for (m = 0; m <= 10 ; ++m)

 printf(“%4d”, m);

 printf(“\n– \n”);

 m = 0;

 do

 {

Programming in ANSI C178

 printf(“%2d “, m);

 x = 0; binom = 1;

 while (x <= m)

 {

 if(m == 0 || x == 0)

 printf(“%4d”, binom);

 else

 {

 binom = binom * (m - x + 1)/x;

 printf(“%4d”, binom);

 }

 x = x + 1;

 }

 printf(“\n”);

 m = m + 1;

 }

 while (m <= MAX);

 printf(“– \n”);

 }

 Output

 mx 0 1 2 3 4 5 6 7 8 9 10

 –

 0 1

 1 1 1

 2 1 2 1

 3 1 3 3 1

 4 1 4 6 4 1

 5 1 5 10 10 5 1

 6 1 6 15 20 15 6 1

 7 1 7 21 35 35 21 7 1

 8 1 8 28 56 70 56 28 8 1

 9 1 9 36 84 126 126 84 36 9 1

 10 1 10 45 120 210 252 210 120 45 10 1

 –

 Fig. 6.16 Program to print table

2. Histogram

Problem: In an organization, the employees are grouped according to their basic pay for the purpose of

certain perks. The pay-range and the number of employees in each group are as follows:

Decision Making and Looping 179

 Group Pay-Range Number of Employees

Draw a histogram to highlight the group sizes.

Problem Analysis: Given the size of groups, it is required to draw bars representing the sizes of various

groups. For each bar, its group number and size are to be written.

The program uses four for loops and two if.....else statements.

 Program:

 #define N 5

 main()

 {

 int value[N];

 int i, j, n, x;

 for (n=0; n < N; ++n)

 {

 printf(“Enter employees in Group - %d : “,n+1);

 scanf(“%d”, &x);

 value[n] = x;

 printf(“%d\n”, value[n]);

 }

 printf(“\n”);

 printf(“|\n”);

 for (n = 0 ; n < N ; ++n)

 {

 for (i = 1 ; i <= 3 ; i++)

 {

 if (i == 2)

 printf(“Group-%1d |”,n+1);

 else

 printf(“|”);

 for (j = 1 ; j <= value[n]; ++j)

 printf(“*”);

 if (i == 2)

 printf(“(%d)\n”, value[n]);

 else

 printf(“\n”);

Programming in ANSI C180

 }

 printf(“|\n”);

 }

 }

 Output

 Enter employees in Group - 1 : 12

 12

 Enter employees in Group - 2 : 23

 23

 Enter employees in Group - 3 : 35

 35

 Enter employees in Group - 4 : 20

 20

 Enter Employees in Group - 5 : 11

 11

 |

 |************

 Group-1 |************(12)

 |************

 |

 |***********************

 Group-2 |***********************(23)

 |***********************

 |

 |***********************************

 Group-3 |***********************************(35)

 |***********************************

 |

 |********************

 Group-4 |********************(20)

 |********************

 |

 |***********

 Group-5 |***********(11)

 |**********

 |

 Fig. 6.17 Program to draw a histogram

Decision Making and Looping 181

3. Minimum Cost

Problem: The cost of operation of a unit consists of two components C1 and C2 which can be expressed

as functions of a parameter p as follows:

 C2 = 10 + p2

The parameter p ranges from 0 to 10. Determine the value of p with an accuracy of + 0.1 where the

cost of operation would be minimum.

Problem Analysis:

 Total cost = C
1
 + C

2
2

steps of 0.1) and stops when the cost begins to increase. The program employs break and continue

statements to exit the loop.

 Program

 main()

 {

 float p, cost, p1, cost1;

 for (p = 0; p <= 10; p = p + 0.1)

 {

 cost = 40 - 8 * p + p * p;

 if(p == 0)

 {

 cost1 = cost;

 continue;

 }

 if (cost >= cost1)

 break;

 cost1 = cost;

 p1 = p;

 }

 p = (p + p1)/2.0;

 cost = 40 - 8 * p + p * p;

 printf(“\nMINIMUM COST = %.2f AT p = %.1f\n”,

 cost, p);

 }

Output

 MINIMUM COST = 24.00 A p = 4.0

 Fig. 6.18 Program of minimum cost problem

Programming in ANSI C182

4. Plotting of Two Functions

Problem: We have two functions of the type

 y1 = exp (–ax)

 y2 = exp (–ax2/2)

Problem Analysis: Initially when x = 0, y1 = y2 =1 and the graphs start from the same point. The curves

cross when they are again equal at x = 2.0. The program should have appropriate branch statements to

print the graph points at the following three conditions:

 1. y1 > y2

 2. y1 < y2

 3. y1 = y2

The functions y1 and y2 are normalized and converted to integers as follows:

2

common point).

 Program

 #include <math.h>

 main()

 {

 int i;

 float a, x, y1, y2;

 a = 0.4;

 printf(“ Y – – – – > \n”);

 printf(“ 0 – \n”);

 for (x = 0; x < 5; x = x+0.25)

 { /* BEGINNING OF FOR LOOP */

 /*......Evaluation of functions*/

 y1 = (int) (50 * exp(-a * x) + 0.5);

 y2 = (int) (50 * exp(-a * x * x/2) + 0.5);

 /*......Plotting when y1 = y2.........*/

 if (y1 == y2)

 {

 if (x == 2.5)

 printf(“ X |”);

 else

 printf(“|”);

 for (i = 1; i <= y1 - 1; ++i)

 printf(“ “);

 printf(“#\n”);

 continue;

Decision Making and Looping 183

 }

 /*...... Plotting when y1 > y2*/

 if (y1 > y2)

 {

 if (x == 2.5)

 printf(“ X |”);

 else

 printf(“ |”);

 for (i = 1; i <= y2 -1 ; ++i)

 printf(“ “);

 printf(“*”);

 for (i = 1; i <= (y1 - y2 - 1); ++i)

 printf(“-”);

 printf(“0\n”);

 continue;

 }

 /*........ Plotting when y2 > y1.........*/

 if (x == 2.5)

 printf(“ X |”);

 else

 printf(“ |”);

 for (i = 1 ; i <= (y1 - 1); ++i)

 printf(“ “);

 printf(“0”);

 for (i = 1; i <= (y2 - y1 - 1); ++i)

 printf(“-”);

 printf(“*\n”);

 } /*.......END OF FOR LOOP........*/

 printf(“ |n”);

 }

Programming in ANSI C184

Output
Y

0

#

0 --- *

0------ *

0 ------- *

0------ *

0------ *

0 ---- *

0 - *

#

* -0

*X --- 0

*----- 0

* ------ 0

*-------0

*------- 0

*-------0

*-------0

*-------0

*------0

*-----0

 Fig. 6.19 Plotting of two functions

Review Questions

true or false.

 (a) The do…while

expression.

 (b) In a pretest loop, if the body is executed n times, the test expression is executed n + 1 times.

 (c) The number of times a control variable is updated always equals the number of loop

iterations.

 (d) Both the pretest loops include initialization within the statement.

 (e) In a for loop expression, the starting value of the control variable must be less than its

ending value.

 (f) The initialization, test condition and increment parts may be missing in a for statement.

 (g) while loops can be used to replace for loops without any change in the body of the loop.

 (i) The use of continue statement is considered as unstructured programming.

 (j) The three loop expressions used in a for loop header must be separated by commas.

Decision Making and Looping 185

 (a) In an exit-controlled loop, if the body is executed n times, the test condition is evaluated

________times.

 (b) The _________statement is used to skip a part of the statements in a loop.

for loop with the no test condition is known as ______ loop.

 (d) The sentinel-controlled loop is also known as _______ loop.

 (e) In a counter-controlled loop, variable known as _____ is used to count the loop operations.

for statements? If yes, explain its consequences.

goto goto

becomes necessary.

for loops when the number of iterations are not known?

for loops.

 (a) for (n = 1; n != 10; n += 2)

 sum = sum + n;

 (b) for (n = 5; n <= m; n -=1)

 sum = sum + n;

 (c) for (n = 1; n <= 5;)

 sum = sum + n;

 (d) for (n = 1; ; n = n + 1)

 sum = sum + n;

 (e) for (n = 1; n < 5; n ++)

 n = n -1

 (a) count = 5;

 while (count -- > 0)

 printf(count);

 (b) count = 5;

 while (-- count > 0)

 printf(count);

 (c) count = 5;

 do printf(count);

 while (count > 0);

 (d) for (m = 10; m > 7, m -=2)

 printf(m);

 (a) while and do...while

 (b) while and for

 (c) break and goto

 (d) break and continue

 (e) continue and goto

each loop will be executed.

Programming in ANSI C186

 (a) x = 5;
 y = 50;

 while (x <= y)

 {

 x = y/x;

 – – – – –
 ––––––
 }

 (b) m = 1;
 do

 {

 – – – – –
 ––––––
 m = m+2;

 }

 while (m < 10);

 (c) int i;
 for (i = 0; i <= 5; i = i+2/3)

 {

 – – – – –
 – – – – –
 ––––––
 }

 (d) int m = 10;
 int n = 7;

 while (m % n >= 0)

 {

 – – –
 m = m + 1;

 n = n + 2;

 – – –
 }

been declared and assigned values.

 (a) while (count != 10);

 {

 count = 1;

 sum = sum + x;

 count = count + 1;

 }

 (b) name = 0;

 do { name = name + 1;

Decision Making and Looping 187

 printf(“My name is John\n”);}

 while (name = 1)

 (c) do;

 total = total + value;

 scanf(“%f”, &value);

 while (value != 999);

 (d) for (x = 1, x > 10; x = x + 1)

 {

 – – – – –
 ––––––
 ––––––
 }

 (e) m = 1;

 n = 0;

 for (; m+n < 10; ++n);

 printf(“Hello\n”);

 m = m+10

 (f) for (p = 10; p > 0;)

 p = p - 1;

 printf(“%f”, p);

for statement to print each of the following sequences of integers:

 (c) – 4, –2, 0, 2, 4

 for loops to while loops:

 (a) for (m = 1; m < 10; m = m + 1)

 printf(m);

 (b) for (; scanf(“%d”, & m) != -1;)

 printf(m);

 for do loops.

 int m = 100, n = 0;

 while (n == 0)

 {

 if (m < 10)

 break;

 m = m-10;

 int m = 0 ;

 do

 {

 if (m > 10)

 continue ;

Programming in ANSI C188

 m = m + 10 ;

 } while (m < 50) ;

 printf(“%d”, m);

 int n = 0, m = 1 ;

 do

 {

 printf(m) ;

 m++ ;

 }

 while (m <= n) ;

 int n = 0, m ;

 for (m = 1; m <= n + 1 ; m++)

 printf(m);

 for (; ;)

Programming Exercises

while loop to reverse the digits of the number. For

example, the number

 should be written as

 (Hint: Use modulus operator to extract the last digit and the integer division by 10 to get the n–1

digit number from the n digit number.)

 factorial m = m! = m x (m–1) x x 1.

 Write a program that computes and prints a table of factorials for any given m.

 are called Fibonacci numbers. Write a program using a do....while loop to calculate and print the

 (Hint:

numbers.)

for statement.

n

values of P, r, and n.

Decision Making and Looping 189

 P : 1000, 2000, 3000,........, 10,000

 r : 0.10, 0.11, 0.12,, 0.20

 n : 1, 2, 3,, 10

 (Hint:

can be recursively written as

and so on.)

for loops.

for and continue statements.

else...if constructs instead

of continue statements.

 y = exp (-x)

 for x varying from 0.0 to 10.0 in steps of 0.10. The table should appear as follows:

Table for Y = EXP(–X)

x 0.1 0.2 0.3 0.9

0.0

1.0

2.0

3.0

.

.

.

9.0

 (Hint: The bits of the binary representation of an integer can be generated by repeatedly dividing

the number and the successive quotients by 2 and saving the remainder, which is either 0 or 1,

after each division.)

Programming in ANSI C190

for and if

 - - - - - - - - - - - - - - - - - - - -

 - - - - - - - - - - - - - - - - - - - -

 - - - - - - - - - - - - - - - - - - - -

logarithms. Use the following formula.

 e = 1 + 1/1! + 1 /2! + 1 /3! + + 1 /n!

 Use a suitable loop construct. The loop must terminate when the difference between two

successive values of e is less than 0.00001.

 (a) sinx = x – x3/3! + x

 (b) cosx = 1 – x2/2! + x4/4! – x
2 + (1/3)3 + (1/4)4 + … …

 P = c (1–d)n

 where c = original cost

 d = rate of depreciation (per year)

 n = number of years

 p = present value after y years.

 If P is considered the scrap value at the end of useful life of the item, write a program to compute

the useful life in years given the original cost, depreciation rate, and the scrap value.

 The program should request the user to input the data interactively.

S as shown below:

 (a) S S S S S (b) S S S S S

 S S S S S S S

 S S S S S S S

 S S S S S S S

 S S S S S S S S S S

 y = sin (x)

Decision Making and Looping 191

not divisible by either 2 or 3 and lie between 1 and

100. Program should also account the number of such integers and print the result.

square as shown below.

 S S S S S

 S S S S S

 S S O S S

 S S S S S

 S S S S S

using for loop to compute the sum of all positive values and print the sum and the number of

values added. The program should use scanf to read the values and terminate when the sum

exceeds 999. Do not use goto statement.

7 ARRAYS

Key Terms

Array I Structured data types I One-dimentional array I Sorting I Searching I Two-dimentional array I Multi-

dimentional array I Static memory allocation I Static arrays I Dynamic memory allocation I Dynamic arrays.

7.1 INTRODUCTION

So far we have used only the fundamental data types, namely and variations of

int and . Although these types are very useful, they are constrained by the fact that a variable

of these types can store only one value at any given time. Therefore, they can be used only to handle

limited amounts of data. In many applications, however, we need to handle a large volume of data in

terms of reading, processing and printing. To process such large amounts of data, we need a powerful

derived data type known as array that can be used for such applications.

An array is a sequenced collection of elements of the same data type. It is simply a grouping

of like-type data. In its simplest form, an array can be used to represent a list of numbers, or a list of

names. Some examples where the concept of an array can be used:

 ∑ List of temperatures recorded every hour in a day, or a month, or a year.

 ∑ List of employees in an organization.

 ∑ List of products and their cost sold by a store.

 ∑ Test scores of a class of students.

 ∑ List of customers and their telephone numbers.

 ∑ Table of daily rainfall data.

and so on.

As we mentioned earlier, an array is a sequenced collection of related data items that share a

common name. For instance, we can use an array name to represent a of a group

of employees in an organization. We can refer to the individual salaries by writing a number called

or in brackets after the array name. For example,

 salary [10]

193

represents the salary of 10th employee. While the complete set of values is referred to as an array,

individual values are called .

The ability to use a single name to represent a collection of items and to refer to an item by specifying

construct, discussed earlier, with the subscript as the control variable to read the entire array, perform

calculations, and print out the results.

We can use arrays to represent not only simple lists of values but also tables of data in two, three

or more dimensions. In this chapter, we introduce the concept of an array and discuss how to use it to

create and apply the following types of arrays.

 ∑ One-dimensional arrays

 ∑ Two-dimensional arrays

 ∑ Multidimensional arrays

types as shown below:

 - Arrays - Integral Types - Structures

 - Functions - Float Types - Unions

Arrays and structures are referred to as because they can be used

to represent data values that have a structure of some sort. Structured data types provide an

organizational scheme that shows the relationships among the individual elements and facilitate

structures:

 ∑ Linked Lists

 ∑ Stacks

 ∑ Queues

 ∑ Trees

Programming in ANSI C194

7.2 ONE-DIMENSIONAL ARRAYS

A list of items can be given one variable name using only one subscript and such a variable is called

a or a array. In mathematics, we often deal with variables

that are single-subscripted. For instance, we use the equation.

A =
x

n

i

i =

n

1

Â

to calculate the average of n values of The subscripted variable
i
refers to the ith element of

single-subscripted variable
i
 can be expressed as

x[1], x[2], x[3],.........x[n]

The subscript can begin with number 0. That is

x[0]

array variable , then we may declare the variable as follows

int number[5];

number [0]

number [1]

number [2]

number [3]

number [4]

The values to the array elements can be assigned as follows:

 number[0] = 35;

 number[1] = 40;

 number[2] = 20;

 number[3] = 57;

 number[4] = 19;

This would cause the array to store the values as shown below:

number [0]

number [1]

number [2]

number [3]

number [4]

35
40
20
57
19

are valid statements:

 a = number[0] + 10;

 number[4] = number[0] + number [2];

195

 number[2] = x[5] + y[10];

 value[6] = number[i] * 3;

The subscripts of an array can be integer constants, integer variables like i, or expressions that yield

integers.

7.3 DECLARATION OF ONE-DIMENSIONAL ARRAYS

Like any other variable, arrays must be declared before they are used so that the compiler can allocate

space for them in memory. The general form of array declaration is

type variable-name[size];

The int, or

char and the indicates the maximum number of elements that can be stored inside the array. For

example,

float height[50];

declares the height

int group[10];

declares the as an array to contain a maximum of 10 integer constants. Remember:

 ∑ Any reference to the arrays outside the declared limits would not necessarily cause an error.

Rather, it might result in unpredictable program results.

 ∑ The size should be either a numeric constant or a symbolic constant.

 in a character string

represents the maximum number of characters that the string can hold. For instance,

char name[10];

declares the name

Suppose we read the following string constant into the string variable name.

name and is stored in the memory as

follows:

‘W’

‘L’

‘L’

‘ ‘

‘D’

‘O’

‘\0’

Programming in ANSI C196

When the compiler sees a character string, it terminates it with an additional null character. Thus, the

element name[10] holds the null character ‘\0’.

.

Program 7.1
Write a program using a single-subscripted variable to evaluate the following

expressions:

Total = xi

i =

2

1

10

Â

x to read the values and compute the sum of their

squares.

 Program

 main()

 {

 int i ;

 float x[10], value, total ;

 /*READING VALUES INTO ARRAY */

 printf(“ENTER 10 REAL NUMBERS\n”) ;

 for(i = 0 ; i < 10 ; i++)

 {

 scanf(“%f”, &value) ;

 x[i] = value ;

 }

 /*COMPUTATION OF TOTAL*/

 total = 0.0 ;

 for(i = 0 ; i < 10 ; i++)

 total = total + x[i] * x[i] ;

 /*. . . . PRINTING OF x[i] VALUES AND TOTAL . . . */

 printf(“\n”);

 for(i = 0 ; i < 10 ; i++)

 printf(“x[%2d] = %5.2f\n”, i+1, x[i]) ;

 printf(“\ntotal = %.2f\n”, total) ;

 }

197

 Output

 ENTER 10 REAL NUMBERS

 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.10

 x[1] = 1.10

 x[2] = 2.20

 x[3] = 3.30

 x[4] = 4.40

 x[5] = 5.50

 x[6] = 6.60

 x[7] = 7.70

 x[8] = 8.80

 x[9] = 9.90

 x[10] = 10.10

 Total = 446.86

 Fig. 7.1 one-dimensional array

 Note

7.4 INITIALIZATION OF ONE-DIMENSIONAL ARRAYS

array can be initialized at either of the following stages:

 ∑ At compile time

 ∑ At run time

We can initialize the elements of arrays in the same way as the ordinary variables when they are

declared. The general form of initialization of arrays is:

type array-name[size] = { list of values };

The values in the list are separated by commas. For example, the statement

int number[3] = { 0,0,0 };

will declare the variable

number of values in the list is less than the number of elements, then only that many elements will be

initialized. The remaining elements will be set to zero automatically. For instance,

Programming in ANSI C198

float total[5] = {0.0,15.75,–10};

The may be omitted. In such cases, the compiler allocates enough space for all initialized

elements. For example, the statement

int counter[] = {1,1,1,1};

will declare the

long as we initialize every element in the array.

char name[] = {‘J’,‘o’, ‘h’, ‘n’, ‘\0’};

declares the name

character. Alternatively, we can assign the string literal directly as under:

char name [] = “John”;

declared size. In such cases, the remaining elements are inilialized to , if the array type is numeric

and NULL if the type is char. For example,

int number [5] = {10, 20};

the declaration.

char city [5] = {‘B’};

the size explicitly, as it allows the compiler to do some error checking.

Remember, however, if we have more initializers than the declared size, the compiler will produce an

error. That is, the statement

int number [3] = {10, 20, 30, 40};

An array can be explicitly initialized at run time. This approach is usually applied for initializing large

 – – ––– – ––

 – – ––– – ––

 for (i = 0; i < 100; i = i+1)

 {

 if i < 50

 sum[i] = 0.0; /* assignment statement */

 else

 sum[i] = 1.0;

 }

 – – ––– – ––

 – – ––– – ––

199

initialized to 1.0 at run time.

We can also use a read function such as scanf to initialize an array. For example, the statements

 int x [3];

 scanf(“%d%d%d”, &x[0], &[1], &x[2]);

will initialize array elements with the values entered through the keyboard.

Program 7.2
annual examination.

 Write a program to count the number of students belonging to each of

 containing 11 elements, one for each range of

For any value, we can determine the correct group element by dividing the value by 10. For example,

counted.

 Program

 #define MAXVAL 50

 #define COUNTER 11

 main()

 {

 float value[MAXVAL];

 int i, low, high;

 int group[COUNTER] = {0,0,0,0,0,0,0,0,0,0,0};

 /*READING AND COUNTING*/

 for(i = 0 ; i < MAXVAL ; i++)

 {

 /*.READING OF VALUES */

 scanf(“%f”, &value[i]) ;

 /*.COUNTING FREQUENCY OF GROUPS. */

 ++ group[(int) (value[i]) / 10] ;

 }

 /*PRINTING OF FREQUENCY TABLE*/

 printf(“\n”);

 printf(“ GROUP RANGE FREQUENCY\n\n”) ;

 for(i = 0 ; i < COUNTER ; i++)

Programming in ANSI C200

 {

 low = i * 10 ;

 if(i == 10)

 high = 100 ;

 else

 high = low + 9 ;

 printf(“ %2d %3d to %3d %d\n”,

 i+1, low, high, group[i]) ;

 }

 }

 Output

 43 65 51 27 79 11 56 61 82 09 25 36 07 49 55 63 74

 81 49 37 40 49 16 75 87 91 33 24 58 78 65 56 76 67 (Input data)

 45 54 36 63 12 21 73 49 51 19 39 49 68 93 85 59

 GROUP RANGE FREQUENCY

 1 0 to 9 2

 2 10 to 19 4

 3 20 to 29 4

 4 30 to 39 5

 5 40 to 49 8

 6 50 to 59 8

 7 60 to 69 7

 8 70 to 79 6

 9 80 to 89 4

 10 90 to 99 2

 11 100 to 100 0

 Fig. 7.2 frequency counting

int group [COUNTER] = {0,0,0,0,0,0,0,0,0,0,0};

which can be replaced by

int group [COUNTER] = {0};

This will initialize all the elements to zero.

Program 7.3

 Algorithm

 Step 1 – Start

 Step 2 – Read a binary number string (a[])

 Step 3 – Calculate the length of string str (len)

201

 Step 4 – Initialize the looping counter k=0

 Step 5 – Repeat Steps 6-8 while a[k] != ‘\0’

 Step 6 – If a[k]!= 0 AND a[k]!= 1 goto Step 7 else goto Step 8

 Step 7 – Display error “Incorrect binary number format” and terminate the program

 Step 8 – k = k + 1

 Step 9 – Initialize the looping counter i = len - 1

 Step 10 – Repeat Step 11 while a[i]!=’1’

 Step 11 – i = i - 1

 Step 12 – Initialize the looping counter j = i - 1

 Step 13 – Repeat Step 14-17 while j >= 0

 Step 14 – If a[j]=1 goto Step 15 else goto Step 16

 Step 15 – a[j]=’0’

 Step 16 – a[j]=’1’

 Step 17 – j = j - 1

 Step 18 – Display a[] as the two’s compliment

 Step 19 – Stop

 Flowchart

Start

Read binary number a[]

Is
a[k]!='\0'?

Yes

No

Is a[k]!=0
& a[k]!=1?

len = strlen(a)
k = 0

Display "Incorrect
binary number format"

Display a[] as
the two's compliment

Stop

No

Yes

k = k + 1

i = len – 1

i = i – 1

Yes

No

j = j – 1

No

j = i – 1

Is a[i]!=1?

Is j>=0?

Is a[j]=1?

Yes

a[j]= 0 a[j] = 1

Yes

No

Programming in ANSI C202

 Program

 #include <stdio.h>

 #include <conio.h>

 #include <string.h>

 void main()

 {

 char a[16];

 int i,j,k,len;

 clrscr();

 printf(“Enter a binary number: “);

 gets(a);

 len=strlen(a);

 for(k=0;a[k]!=’\0’; k++)

 {

 if (a[k]!=’0’ && a[k]!=’1’)

 {

 printf(“\nIncorrect binary number format...the program will quit”);

 getch();

 exit(0);

 }

 }

 for(i=len-1;a[i]!=’1’; i--)

 ;

 for(j=i-1;j>=0;j--)

 {

 if(a[j]==’1’)

 a[j]=’0’;

 else

 a[j]=’1’;

 }

 printf(“\n2’s compliment = %s”,a);

 getch();

 }

 Output

 Enter a binary number: 01011001001

 2’s compliment = 10100110111

 Fig. 7.3

Searching and Sorting

Searching and sorting are the two most frequent operations performed on arrays. Computer

Scientists have devised several data structures and searching and sorting techniques that facilitate

rapid access to data stored in lists.

203

 is the process of arranging elements in the list according to their values, in ascending or

descending order. A sorted list is called an Sorted lists are especially important in list

searching because they facilitate rapid search operations. Many sorting techniques are available.

The three simple and most important among them are:

 ∑
 ∑ Selection sort

 ∑ Insertion sort

Other sorting techniques include Shell sort, Merge sort and Quick sort.

element is often called the

with a list element value, the search said to be successful; otherwise, it is unsuccessful. The two most

commonly used search techniques are:

 ∑ Sequential search

 ∑

on data structures and algorithms.

7.5 TWO-DIMENSIONAL ARRAYS

So far we have discussed the array variables that can store a list of values. There could be situations

of sales of three items by four sales girls:

Item1 Item2 Item3

Salesgirl #1 310 275 365

Salesgirl #2 210 190 325

Salesgirl #3 405 235 240

Salesgirl #4 260 300 380

consisting of four and three

salesgirl and each column represents the values of sales of a particular item.

In mathematics, we represent a particular value in a matrix by using two subscripts such as v
ij
. Here

v denotes the entire matrix and v
ij
 refers to the value in the ith row and jth column. For example, in the

above table v

Two-dimensional arrays are declared as follows:

 array_name ;

Programming in ANSI C204

selects the row and the second index selects the column within that row.

Column0

Row 0

Row 2

Row 1

Row 3

Column1 Column2

0 0 00 1 2

1

3

2

310

405

10

310

275

235

190

275

365

240

325

365

1

3

2

1

3

2

0

0

0

1

1

1

2

2

2

[[[[[[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[[[[[[

[

[

[

[

[

[[

[

[

[

[

[

[

[

[

[

[

[

[

Fig. 7.4 two-dimensional

Program 7.4
 The Write a program using a two-dimensional array to compute and print the

following information from the table of data discussed above:

 in two-

dimensions with the index i representing girls and j representing items. The following equations are used

in computing the results:

th girl =

j = 0

2

Â

th item =

i = 0

3

Â

i j= =0

3

0

2

Â Â

 =

i = 0

3

Â

 =

j = 0

2

Â

205

 Program

 #define MAXGIRLS 4

 #define MAXITEMS 3

 main()

 {

 int value[MAXGIRLS][MAXITEMS];

 int girl_total[MAXGIRLS] , item_total[MAXITEMS];

 int i, j, grand_total;

 /*.......READING OF VALUES AND COMPUTING girl_total ...*/

 printf(“Input data\n”);

 printf(“Enter values, one at a time, row-wise\n\n”);

 for(i = 0 ; i < MAXGIRLS ; i++)

 {

 girl_total[i] = 0;

 for(j = 0 ; j < MAXITEMS ; j++)

 {

 scanf(“%d”, &value[i][j]);

 girl_total[i] = girl_total[i] + value[i][j];

 }

 }

 /*.......COMPUTING item_total..........................*/

 for(j = 0 ; j < MAXITEMS ; j++)

 {

 item_total[j] = 0;

 for(i =0 ; i < MAXGIRLS ; i++)

 item_total[j] = item_total[j] + value[i][j];

 }

 /*.......COMPUTING grand_total.........................*/

 grand_total = 0;

 for(i =0 ; i < MAXGIRLS ; i++)

 grand_total = grand_total + girl_total[i];

 /*PRINTING OF RESULTS...........................*/

 printf(“\n GIRLS TOTALS\n\n”);

 for(i = 0 ; i < MAXGIRLS ; i++)

 printf(“Salesgirl[%d] = %d\n”, i+1, girl_total[i]);

 printf(“\n ITEM TOTALS\n\n”);

Programming in ANSI C206

 for(j = 0 ; j < MAXITEMS ; j++)

 printf(“Item[%d] = %d\n”, j+1 , item_total[j]);

 printf(“\nGrand Total = %d\n”, grand_total);

 }

 Output

 Input data

 Enter values, one at a time, row_wise

 310 257 365

 210 190 325

 405 235 240

 260 300 380

 GIRLS TOTALS

 Salesgirl[1] = 950

 Salesgirl[2] = 725

 Salesgirl[3] = 880

 Salesgirl[4] = 940

 ITEM TOTALS

 Item[1] = 1185

 Item[2] = 1000

 Item[3] = 1310

 Grand Total = 3495

 Fig. 7.5

Program 7.5
Write a program to compute and print a multiplication table for numbers 1 to

1

1 1
10

. . .

. . .
10 . .

calculated using the control variables of the nested for loops as follows:

product[i] [j] = row * column

where i denotes rows and j denotes columns of the product table. Since the indices i and j range from 0

 row = i+1

 column = j+1

207

 Program

 #define ROWS 5

 #define COLUMNS 5

 main()

 {

 int row, column, product[ROWS][COLUMNS] ;

 int i, j ;

 printf(“ MULTIPLICATION TABLE\n\n”) ;

 printf(“ “) ;

 for(j = 1 ; j <= COLUMNS ; j++)

 printf(“%4d” , j) ;

 printf(“\n”) ;

 printf(“——————————————————————————————\n”);

 for(i = 0 ; i < ROWS ; i++)

 {

row = i + 1 ;

 printf(“%2d |”, row) ;

 for(j = 1 ; j <= COLUMNS ; j++)

 {

 column = j ;

 product[i][j] = row * column ;

 printf(“%4d”, product[i][j]) ;

 }

 printf(“\n”) ;

 }

 }

 Output

 MULTIPLICATION TABLE

 1 2 3 4 5

 1 1 2 3 4 5

 2 2 4 6 8 10

 3 3 6 9 12 15

 4 4 8 12 16 20

 5 5 10 15 20 25

 Fig. 7.6

7.6 INITIALIZING TWO-DIMENSIONAL ARRAYS

Like the one-dimensional arrays, two-dimensional arrays may be initialized by following their declaration

with a list of initial values enclosed in braces. For example,

int table[2][3] = { 0,0,0,1,1,1};

Programming in ANSI C208

by row. The above statement can be equivalently written as

int table[2][3] = {{0,0,0}, {1,1,1}};

by surrounding the elements of the each row by braces.

We can also initialize a two-dimensional array in the form of a matrix as shown below:

 int table[2][3] = {

 {0,0,0},

 {1,1,1}

 };

row, except in the case of the last row.

When the array is completely initialized with all values, explicitly, we need not specify the size of the

 int table [] [3] = {

 { 0, 0, 0},

 { 1, 1, 1}

 };

is permitted.

If the values are missing in an initializer, they are automatically set to zero. For instance, the statement

 int table[2][3] = {

 {1,1},

 {2}

 };

all other elements to zero.

When all the elements are to be initialized to zero, the following short-cut method may be used.

int m[3][5] = { {0}, {0}, {0}};

initialized to zero. The following statement will also achieve the same result:

int m [3] [5] = { 0, 0};

Program 7.6

using. The results, in coded form, are tabulated as follows:

209

 Write a program to produce a table showing popularity of various cars in four cities.

A two-dimensional array is used as an accumulator to store the number of cars used,

under various categories in each city. For example, the element

cars of type j used in city i. The

initialized to zero.

terminal. Tabulation ends when the letter X is read in place of a city code.

 Program

 main()

 {

 int i, j, car;

 int frequency[5][5] = { {0},{0},{0},{0},{0} };

 char city;

 printf(“For each person, enter the city code \n”);

 printf(“followed by the car code.\n”);

 printf(“Enter the letter X to indicate end.\n”);

 /*. TABULATION BEGINS */

 for(i = 1 ; i < 100 ; i++)

 {

 scanf(“%c”, &city);

 if(city == ‘X’)

 break;

 scanf(“%d”, &car);

 switch(city)

 {

 case ‘B’ : frequency[1][car]++;

 break;

 case ‘C’ : frequency[2][car]++;

 break;

 case ‘D’ : frequency[3][car]++;

 break;

 case ‘M’ : frequency[4][car]++;

 break;

 }

 }

 /*.TABULATION COMPLETED AND PRINTING BEGINS. . . .*/

 printf(“\n\n”);

 printf(“ POPULARITY TABLE\n\n”);

 printf(“——————————————————————————————–————–\n”);

Programming in ANSI C210

 printf(“City Ambassador Fiat Dolphin Maruti \n”);

 printf(“———————————————————————————————————–\n”);

 for(i = 1 ; i <= 4 ; i++)

 {

 switch(i)

 {

 case 1 : printf(“Bombay “) ;

 break ;

 case 2 : printf(“Calcutta “) ;

 break ;

 case 3 : printf(“Delhi “) ;

 break ;

 case 4 : printf(“Madras “) ;

 break ;

 }

 for(j = 1 ; j <= 4 ; j++)

 printf(“%7d”, frequency[i][j]) ;

 printf(“\n”) ;

 }

 printf(“——\n”);

 /*. PRINTING ENDS.*/

 }

 Output

 For each person, enter the city code

 followed by the car code.

 Enter the letter X to indicate end.

 M 1 C 2 B 1 D 3 M 2 B 4

 C 1 D 3 M 4 B 2 D 1 C 3

 D 4 D 4 M 1 M 1 B 3 B 3

 C 1 C 1 C 2 M 4 M 4 C 2

 D 1 C 2 B 3 M 1 B 1 C 2

 D 3 M 4 C 1 D 2 M 3 B 4 X

 POPULARITY TABLE

 City Ambassador Fiat Dolphin Maruti

 Bombay 2 1 3 2

 Calcutta 4 5 1 0

 Delhi 2 1 3 2

 Madras 4 1 1 4

 Fig. 7.7

211

maps the way that data elements are laid out in the memory. The elements of all arrays are stored

contiguously in increasing memory locations, essentially in a single list. If we consider the memory

as a row of bytes, with the lowest address on the left and the highest address on the right, a simple

the last row, treating each row like a simple array. This is illustrated below.

Column

3 3 array¥

0

0

1

1

2

2

30

60

10 20

5040

8070 90

row

row 0 row 1 row 2

10 40 7020 50 8030 60 90

[0][0] [0][1] [0][2] 1][[0] [1][1] [1][2] [2][0] [2][1] [2][2]
1 2 3 4 5 6 7 8 9

F

subscripts, the second has all of its subscripts 0 except the far right which has a value of 1 and so on.

er

...

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

000 001 002 010 011 012 020 021 022

100 101 102 110 111 112 120 121 122

...

Program 7.7
¥

matrices.

 Program

 #include<stdio.h>

 #include<conio.h>

 void main()

 {

Programming in ANSI C212

 int a1[10][10],a2[10][10],c[10][10],i,j,k,a,b;

 clrscr();

 printf(“Enter the size of the square matrix\n”);

 scanf (“%d”, &a);

 b=a;

 printf(“You have to enter the matrix elements in row-wise fashion\n”);

 for(i=0;i<a;i++)

 {

 for(j=0;j<b;j++)

 {

 printf(“\nEnter the next element in the 1st matrix=”);

 scanf(“%d”,&a1[i][j]);

 }

 }

 for(i=0;i<a;i++)

 {

 for(j=0;j<b;j++)

 {

 printf(“\n\nEnter the next element in the 2nd matrix=”);

 scanf(“%d”,&a2[i][j]);

 }

 }

 printf(“\n\nEntered matrices are\n”);

 for(i=0;i<a;i++)

 { printf(“\n”);

 for(j=0;j<b;j++)

 printf(“ %d “,a1[i][j]);

 }

 printf(“\n”);

 for(i=0;i<a;i++)

 { printf(“\n”);

 for(j=0;j<b;j++)

 printf(“ %d “,a2[i][j]);

 }

 printf(“\n\nProduct of the two matrices is\n”);

 for(i=0;i<a;i++)

 for(j=0;j<b;j++)

 {

 c[i][j]=0;

 for(k=0;k<a;k++)

 c[i][j]=c[i][j]+a1[i][k]*a2[k][j];

213

 }

 for(i=0;i<a;i++)

 { printf(“\n”);

 for(j=0;j<b;j++)

 printf(“ %d “,c[i][j]);

 }

 getch();

 }

 Output

 Enter the size of the square matrix

 2

 You have to enter the matrix elements in row-wise fashion

 Enter the next element in the 1st matrix=1

 Enter the next element in the 1st matrix=0

 Enter the next element in the 1st matrix=2

 Enter the next element in the 1st matrix=3

 Enter the next element in the 2nd matrix=4

 Enter the next element in the 2nd matrix=5

 Enter the next element in the 2nd matrix=0

 Enter the next element in the 2nd matrix=2

 Entered matrices are

 1 0

 2 3

 4 5

 0 2

 Product of the two matrices is

 4 5

 8 16

Fig. 7.8 ¥

Program 7.8

 Algorithm

 Step 1 – Start

 Step 2 – Read a 3 X 3 matrix (a[3][3])

 Step 3 – Initialize the looping counter i = 0

 Step 4 – Repeat Steps 5-9 while i<3

 Step 5 – Initialize the looping counter j = 0

 Step 6 – Repeat Steps 7-8 while j<3

 Step 7 – b[i][j]=a[j][i]

 Step 8 – j = j + 1

Programming in ANSI C214

 Step 9 – i = i + 1

 Step 10 – Display b[][] as the transpose of the matrix a[][]

 Step 11 – Stop

 Flowchart

 Program

 #include <stdio.h>

 #include <conio.h>

 void main()

 {

 int i,j,a[3][3],b[3][3];

 clrscr();

 printf(“Enter a 3 X 3 matrix:\n”);

 for(i=0;i<3;i++)

 {

 for(j=0;j<3;j++)

 {

 printf(“a[%d][%d] = “,i,j);

 scanf(“%d”,&a[i][j]);

 }

 }

 printf(“\nThe entered matrix

 is: \n”);

 for(i=0;i<3;i++)

 {

 printf(“\n”);

 for(j=0;j<3;j++)

 {

 printf(“%d\t”,a[i][j]);

 }

 }

 for(i=0;i<3;i++)

 {

 for(j=0;j<3;j++)

 b[i][j]=a[j][i];

 }

 printf(“\n\nThe transpose of the matrix is: \n”);

 for(i=0;i<3;i++)

 {

 printf(“\n”);

 for(j=0;j<3;j++)

 {

Start

Read a[3][3]

Is i < 3?

j = 0

Is j < 3?

Display b[] [] as the
transpose of a[] []

No

b[i][j]=a[j][i]

Yes

Yes

i = 0

j = j + 1

i = i + 1

Stop
No

Arrays 215

 printf(“%d\t”,b[i][j]);

 }

 }

 getch();

 }

 Output

 Enter a 3 X 3 matrix:

 a[0][0] = 1

 a[0][1] = 2

 a[0][2] = 3

 a[1][0] = 4

 a[1][1] = 5

 a[1][2] = 6

 a[2][0] = 7

 a[2][1] = 8

 a[2][2] = 9

 The entered matrix is:

 1 2 3

 4 5 6

 7 8 9

 The transpose of the matrix is:

 1 4 7

 2 5 8

 3 6 9

Fig. 7.9

7.7 MULTI-DIMENSIONAL ARRAYS

C allows arrays of three or more dimensions. The exact limit is determined by the compiler. The general

form of a multi-dimensional array is

type array_name[s1][s2][s3]....[sm];

where s
i
 is the size of the ith dimension. Some example are:

int survey[3][5][12];

float table[5][4][5][3];

survey is a three-dimensional array declared to contain 180 integer type elements. Similarly table is a

The array survey may represent a survey data of rainfall during the last three years from January to

survey[2][3][10]

denotes the rainfall in the month of October during the second year in city-3.

Programming in ANSI C216

Remember that a three-dimensional array can be represented as a series of two-dimensional arrays

as shown below:

month city 1

1

.

Year 1 .

.

.

month city 1

1

.

.

.

.

dimensions. Some allow even more.

7.8 DYNAMIC ARRAYS

So far, we created arrays at compile time. An array created at compile time by specifying size in the

compile time is known as and the arrays that receive static memory allocation

are called

are.

This feature is known as and the arrays created at run time are called

Dynamic arrays are created using what are known as and

 , and The

concept of dynamic arrays is used in creating and manipulating data structures such as linked lists,

217

7.9 MORE ABOUT ARRAYS

What we have discussed in this chapter are the basic concepts of arrays and their applications to a

limited extent. There are some more important aspects of application of arrays. They include:

 ∑ using printers for accessing arrays;

 ∑ passing arrays as function parameters;

 ∑ arrays as members of structures;

 ∑ using structure type data as array elements;

 ∑ arrays as dynamic data structures; and

 ∑ manipulating character arrays and strings.

These aspects of arrays are covered later in the following chapters:

 ∑ We need to specify three things, namely, name, type and size, when we declare an array.

 ∑
 ∑
 ∑

a subscript k-1, whereas the element k has a subscript of k itself.

 ∑
 ∑ Supplying more initializers in the initializer list is a compile time error.

 ∑ Use of invalid subscript is one of the common errors. An incorrect or invalid index may cause

unexpected results.

 ∑ When using expressions for subscripts, make sure that their results do not go outside the

 ∑ When using control structures for looping through an array, use proper relational expressions to

statements are

wrong:

 ∑
 ∑ When initializing character arrays, provide enough space for the terminating null character.

 ∑ Make sure that the subscript variables have been properly initialized before they are used.

 ∑
 ∑ During initialization of multi-dimensional arrays, it is an error to omit the array size for any

Programming in ANSI C218

Problem: When all the items in a list are arranged in an order, the middle value which divides the items

into two parts with equal number of items on either side is called the . Odd number of items have

just one middle value while even number of items have two middle values. The median for even number

of items is therefore designated as the average of the two middle values.

 1. Read the items into an array while keeping a count of the items.

interchange their values.

bubbling up effect, this algorithm is called . The bubbling effect is illustrated below for four

items.

80

Initial
values

35

After
step 1

35

After
step 2

35

After
step 3

35 80 65 65

65

Trip-1

65 80 15

10 10 10 80

35 35 35

65 80 80

10

Trip-2

65 65

80 10 10

219

35 10

10 35

65

Trip-3

65

80 80

one level.

The number of steps required in a trip is reduced by one for each trip made. The entire process will be

over when a trip contains only one step. If the list contains n elements, then the number of comparisons

involved would be n(n–1)/2.

 Program

 #define N 10

 main()

 {

 int i,j,n;

 float median,a[N],t;

 printf(“Enter the number of items\n”);

 scanf(“%d”, &n);

 /* Reading items into array a */

 printf(“Input %d values \n”,n);

 for (i = 1; i <= n ; i++)

 scanf(“%f”, &a[i]);

 /* Sorting begins */

 for (i = 1 ; i <= n–1 ; i++)

 { /* Trip-i begins */

 for (j = 1 ; j <= n–i ; j++)

 {

 if (a[j] <= a[j+1])

 { /* Interchanging values */

 t = a[j];

 a[j] = a[j+1];

 a[j+1] = t;

 }

 else

 continue ;

 }

Programming in ANSI C220

 } /* sorting ends */

 /* calculation of median */

 if (n % 2 == 0)

 median = (a[n/2] + a[n/2+1])/2.0 ;

 else

 median = a[n/2 + 1];

 /* Printing */

 for (i = 1 ; i <= n ; i++)

 printf(“%f “, a[i]);

 printf(“\n\nMedian is %f\n”, median);

 }

 Output

 Enter the number of items

 5

 Input 5 values

 1.111 2.222 3.333 4.444 5.555

 5.555000 4.444000 3.333000 2.222000 1.111000

 Median is 3.333000

 Enter the number of items

 6

 Input 6 values

 3 5 8 9 4 6

 9.000000 8.000000 6.000000 5.000000 4.000000 3.000000

 Median is 5.500000

 Fig. 7.10

In statistics, standard deviation is used to measure deviation of data from its mean. The formula for

calculating standard deviation of n items is

 s = variance

where

 variance =
1

n
 ()x mi

i =

n

-Â 2

1

and

m = mean =

1

1
n

xi

i =

n

Â
The algorithm for calculating the standard deviation is as follows:

 1. Read n items.

221

 #include <math.h>

 #define MAXSIZE 100

 main()

 {

 int i,n;

 float value [MAXSIZE], deviation,

 sum,sumsqr,mean,variance,stddeviation;

 sum = sumsqr = n = 0 ;

 printf(“Input values: input –1 to end \n”);

 for (i=1; i< MAXSIZE ; i++)

 {

 scanf(“%f”, &value[i]);

 if (value[i] == -1)

 break;

 sum += value[i];

 n += 1;

 }

 mean = sum/(float)n;

 for (i = 1 ; i<= n; i++)

 {

 deviation = value[i] – mean;

 sumsqr += deviation * deviation;

 }

 variance = sumsqr/(float)n ;

 stddeviation = sqrt(variance) ;

 printf(“\nNumber of items : %d\n”,n);

 printf(“Mean : %f\n”, mean);

 printf(“Standard deviation : %f\n”, stddeviation);

 }

 Output

 Input values: input -1 to end

 65 9 27 78 12 20 33 49 -1

 Number of items : 8

 Mean : 36.625000

 Standard deviation : 23.510303

 Fig. 7.11

Programming in ANSI C222

and student responses are tabulated as shown below:

1

Student 1

Correct
answers

Student 2

Student 3

0 1 22 33 44 5

Items

5 66 77 88 99 0 1 2 3 4 5

The algorithm for evaluating the answers of students is as follows:

 1. Read correct answers into an array.

 Program

 #define STUDENTS 3

 #define ITEMS 25

 main()

 {

 char key[ITEMS+1],response[ITEMS+1];

 int count, i, student,n,

 correct[ITEMS+1];

 /* Reading of Correct answers */

 printf(“Input key to the items\n”);

 for(i=0; i < ITEMS; i++)

 scanf(“%c”,&key[i]);

 scanf(“%c”,&key[i]);

 key[i] = ‘\0’;

 /* Evaluation begins */

 for(student = 1; student <= STUDENTS ; student++)

 {

223

 /*Reading student responses and counting correct ones*/

 count = 0;

 printf(“\n”);

 printf(“Input responses of student-%d\n”,student);

 for(i=0; i < ITEMS ; i++)

 scanf(“%c”,&response[i]);

 scanf(“%c”,&response[i]);

 response[i] = ‘\0’;

 for(i=0; i < ITEMS; i++)

 correct[i] = 0;

 for(i=0; i < ITEMS ; i++)

 if(response[i] == key[i])

 {

 count = count +1 ;

 correct[i] = 1 ;

 }

 /* printing of results */

 printf(“\n”);

 printf(“Student-%d\n”, student);

 printf(“Score is %d out of %d\n”,count, ITEMS);

 printf(“Response to the items below are wrong\n”);

 n = 0;

 for(i=0; i < ITEMS ; i++)

 if(correct[i] == 0)

 {

 printf(“%d “,i+1);

 n = n+1;

 }

 if(n == 0)

 printf(“NIL\n”);

 printf(“\n”);

 } /* Go to next student */

 /* Evaluation and printing ends */

 }

 Output

 Input key to the items

 abcdabcdabcdabcdabcdabcda

 Input responses of student-1

 abcdabcdabcdabcdabcdabcda

 Student-1

 Score is 25 out of 25

 Response to the following items are wrong

Programming in ANSI C224

 NIL

 Input responses of student-2

 abcddcbaabcdabcdddddddddd

 Student-2

 Score is 14 out of 25

 Response to the following items are wrong

 5 6 7 8 17 18 19 21 22 23 25

 Input responses of student-3

 aaaaaaaaaaaaaaaaaaaaaaaaa

 Student-3

 Score is 7 out of 25

 Response to the following items are wrong

 2 3 4 6 7 8 10 11 12 14 15 16 18 19 20 22 23 24

 Fig. 7.12

are recorded product-wise every week in a month. The company reviews its production schedule at

every month-end. The review may require one or more of the following information:

Let us represent the products manufactured and sold by two two-dimensional arrays M and S

respectively. Then,

M11

M =

S11

S =

where Mij represents the number of jth type product manufactured in ith week and Sij the number of jth

product sold in ith week. We may also represent the cost of each product by a single dimensional array

225

C = C1 C2 C3 C4 C5

We shall represent the value of products manufactured and sold by two value arrays, namely,

and . Then,

additional variables are used:

 =

J 1

5

=
Â

 =

J 1

5

=
Â

 =

i 1

4

=
Â

 =

i 1

4

=
Â

 Mtotal = Total value of all the products manufactured during the month

 =

i 1

4

=
Â

j 1

5

=
Â

 Stotal = Total value of all the products sold during the month

 =

i 1

4

=
Â

j 1

5

=
Â

 Program

 main()

 {

 int M[5][6],S[5][6],C[6],

 Mvalue[5][6],Svalue[5][6],

 Mweek[5], Sweek[5],

 Mproduct[6], Sproduct[6],

 Mtotal, Stotal, i,j,number;

Programming in ANSI C226

 /* Input data */

 printf (“ Enter products manufactured week_wise \n”);

 printf (“ M11,M12,——, M21,M22,—— etc\n”);

 for(i=1; i<=4; i++)

 for(j=1;j<=5; j++)

 scanf(“%d”,&M[i][j]);

 printf (“ Enter products sold week_wise\n”);

 printf (“ S11,S12,——, S21,S22,—— etc\n”);

 for(i=1; i<=4; i++)

 for(j=1; j<=5; j++)

 scanf(“%d”, &S[i][j]);

 printf(“ Enter cost of each product\n”);

 for(j=1; j <=5; j++)

 scanf(“%d”,&C[j]);

 /* Value matrices of production and sales */

 for(i=1; i<=4; i++)

 for(j=1; j<=5; j++)

 {

 Mvalue[i][j] = M[i][j] * C[j];

 Svalue[i][j] = S[i][j] * C[j];

 }

 /* Total value of weekly production and sales */

 for(i=1; i<=4; i++)

 {

 Mweek[i] = 0 ;

 Sweek[i] = 0 ;

 for(j=1; j<=5; j++)

 {

 Mweek[i] += Mvalue[i][j];

 Sweek[i] += Svalue[i][j];

 }

 }

 /* Monthly value of product_wise production and sales */

 for(j=1; j<=5; j++)

 {

227

 Mproduct[j] = 0 ;

 Sproduct[j] = 0 ;

 for(i=1; i<=4; i++)

 {

 Mproduct[j] += Mvalue[i][j];

 Sproduct[j] += Svalue[i][j];

 }

 }

 /* Grand total of production and sales values */

 Mtotal = Stotal = 0;

 for(i=1; i<=4; i++)

 {

 Mtotal += Mweek[i];

 Stotal += Sweek[i];

 }

 /***

 Selection and printing of information required

 ***/

 printf(“\n\n”);

 printf(“ Following is the list of things you can\n”);

 printf(“ request for. Enter appropriate item number\n”);

 printf(“ and press RETURN Key\n\n”);

 printf(“ 1.Value matrices of production & sales\n”);

 printf(“ 2.Total value of weekly production & sales\n”);

 printf(“ 3.Product_wise monthly value of production &”);

 printf(“ sales\n”);

 printf(“ 4.Grand total value of production & sales\n”);

 printf(“ 5.Exit\n”);

 number = 0;

 while(1)

 { /* Beginning of while loop */

 printf(“\n\n ENTER YOUR CHOICE:”);

 scanf(“%d”,&number);

 printf(“\n”);

 if(number == 5)

 {

 printf(“ G O O D B Y E\n\n”);

 break;

 }

Programming in ANSI C228

 switch(number)

 { /* Beginning of switch */

 /* V A L U E M A T R I C E S */

 case 1:

 printf(“ VALUE MATRIX OF PRODUCTION\n\n”);

 for(i=1; i<=4; i++)

 {

 printf(“ Week(%d)\t”,i);

 for(j=1; j <=5; j++)

 printf(“%7d”, Mvalue[i][j]);

 printf(“\n”);

 }

 printf(“\n VALUE MATRIX OF SALES\n\n”);

 for(i=1; i <=4; i++)

 {

 printf(“ Week(%d)\t”,i);

 for(j=1; j <=5; j++)

 printf(“%7d”, Svalue[i][j]);

 printf(“\n”);

 }

 break;

 /* W E E K L Y A N A L Y S I S */

 case 2:

 printf(“ TOTAL WEEKLY PRODUCTION & SALES\n\n”);

 printf(“ PRODUCTION SALES\n”);

 printf(“ — — — — — — — \n”);

 for(i=1; i <=4; i++)

 {

 printf(“ Week(%d)\t”, i);

 printf(“%7d\t%7d\n”, Mweek[i], Sweek[i]);

 }

 break;

 /* P R O D U C T W I S E A N A L Y S I S */

 case 3:

 printf(“ PRODUCT_WISE TOTAL PRODUCTION &”);

 printf(“ SALES\n\n”);

 printf(“ PRODUCTION SALES\n”);

 printf(“ — — — — — — — \n”);

 for(j=1; j <=5; j++)

 {

 printf(“ Product(%d)\t”, j);

 printf(“%7d\t%7d\n”,Mproduct[j],Sproduct[j]);

229

 }

 break;

 /* G R A N D T O T A L S */

 case 4:

 printf(“ GRAND TOTAL OF PRODUCTION & SALES\n”);

 printf(“\n Total production = %d\n”, Mtotal);

 printf(“ Total sales = %d\n”, Stotal);

 break;

 /* D E F A U L T */

 default :

 printf(“ Wrong choice, select again\n\n”);

 break;

 } /* End of switch */

 } /* End of while loop */

 printf(“ Exit from the program\n\n”);

 } /* End of main */

 Output

 Enter products manufactured week_wise

 M11, M12, — — – –, M21, M22, ——–– etc

 11 15 12 14 13

 13 13 14 15 12

 12 16 10 15 14

 14 11 15 13 12

 Enter products sold week_wise

 S11,S12,— — – –, S21,S22,——–– etc

 10 13 9 12 11

 12 10 12 14 10

 11 14 10 14 12

 12 10 13 11 10

 Enter cost of each product

 10 20 30 15 25

 Following is the list of things you can

 request for. Enter appropriate item number

 and press RETURN key

 1.Value matrices of production & sales

 2.Total value of weekly production & sales

 3.Product_wise monthly value of production & sales

 4.Grand total value of production & sales

 5.Exit

Programming in ANSI C230

 ENTER YOUR CHOICE:1

 VALUE MATRIX OF PRODUCTION

 Week(1) 110 300 360 210 325

 Week(2) 130 260 420 225 300

 Week(3) 120 320 300 225 350

 Week(4) 140 220 450 185 300

 VALUE MATRIX OF SALES

 Week(1) 100 260 270 180 275

 Week(2) 120 200 360 210 250

 Week(3) 110 280 300 210 300

 Week(4) 120 200 390 165 250

 ENTER YOUR CHOICE:2

 TOTAL WEEKLY PRODUCTION & SALES

 PRODUCTION SALE

 Week(1) 1305 1085

 Week(2) 1335 1140

 Week(3) 1315 1200

 Week(4) 1305 1125

 ENTER YOUR CHOICE:3

 PRODUCT_WISE TOTAL PRODUCTION & SALES

 PRODUCTION SALES

 Product(1) 500 450

 Product(2) 1100 940

 Product(3) 1530 1320

 Product(4) 855 765

 Product(5) 1275 1075

 ENTER YOUR CHOICE:4

 GRAND TOTAL OF PRODUCTION & SALES

 Total production = 5260

 Total sales = 4550

 ENTER YOUR CHOICE:5

 G O O D B Y E

 Exit from the program

 Fig. 7.13

 or .

231

char type variable cannot be used as a subscript in an array.

int score (100);

float values [10,15];

 float average[ROW],[COLUMN];

 char name[15];

 int sum[];

 double salary [i + ROW]

 long int number [ROW]

 int array x[COLUMN];

 int number[] = {0,0,0,0,0};

 float item[3][2] = {0,1,2,3,4,5};

 char word[] = {‘A’,‘R’, ‘R’, ‘A’, ‘Y’};

 int m[2,4] = {(0,0,0,0)(1,1,1,1)};

 float result[10] = 0;

 for (i=1; i<=5; i++)

 for(j=1; j<=4; j++)

 A[i][j] = 0;

 for (i=1; i<4; i++)

 scanf(“%f”, B[i]);

 for (i=0; i<=4; i++)

 B[i] = B[i]+i;

Programming in ANSI C232

 for (i=4; i>=0; i)

 for (j=0; j<4; j++)

 A[i][j] = B[j] + 1.0;

 loop statement that initializes all the diagonal elements of an array to one and others

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

.

.

.

.

.

0 0 0 0 0 1

matrix

Which of the following declarations are correct?

 int maxtrix [3],[5];
 int matrix [5] [3];
 int matrix [1+2] [2+3];
 int matrix [3,5];
 int matrix [3] [5];

char str1[4] = “GOOD”;
char str2[] = “C”;
char str3[5] = “Moon”;
char str4[] = {‘S’, ‘U’, ‘N’};
char str5[10] = “Sun”;

 main ()

 {

 int x ;

 float y [] ;

 }

 main ()

 {

233

 int m [] = { 1,2,3,4,5 }

 int x, y = 0;

 for (x = 0; x < 5; x++)

 y = y + m [x];

 printf(“%d”, y) ;

 }

 main ()

 {

 chart string [] = “HELLO WORLD” ;

 int m;

 for (m = 0; string [m] != ‘\0’; m++)

 if ((m%2) == 0)

 printf(“%c”, string [m]);

 }

i
, y

i

 The straight line equation is

 y = mx + c

 and the values of m and c are given y

 m =
n x y x y

n x x

1 i 1 i

i
2

i

2

S S S

S S

() - ()()
() - ()

 c =
1

n
S y

i
S x

i

 All summations are from 1 to n.

Day 1 10

1 -

 Write a program to read the table elements into a two-dimensional array

the city and day corresponding to

Programming in ANSI C234

done by marking the candidate number on the ballot paper. Write a program to read the ballots

and count the votes cast for each candidate using an array variable . In case, a number

program should also count the number of spoilt ballots.

 1

 1 1

triangle is given by

 p
ij
 = p , + p ,

j

 Write a program to calculate the elements of the Pascal triangle for 10 rows and print the results.

.

.

.

 Write a program to read the data and determine the following:

program to merge

 A =

a aa

a aa

. .

. .

. .

a a

11 12 1n

12 22 2n

n1 nn

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙̇
˙
˙
˙
˙
˙
˙
˙

235

b bb

b bb

. .

. .

. .

b b

11 12 1n

12 22 2n

n1 nn

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙̇
˙
˙
˙
˙
˙
˙
˙

 The product of A and B ¥
following equation.

C
ij

k 1

n

=
Â = a

ik
b

kj

matrix C.

 ∑ Upper left triangle with +1s

 ∑
 ∑ Right to left diagonal with zeros

 Display the contents of the matrix using not more than two statements

 Selecting the largest array element and swapping it with the last array element leaves an

unsorted list whose size is 1 less than the size of the original list. If we repeat this step again on

repeat this until the size of the unsorted list becomes one, the result will be a sorted list.

 Write a program to implement this algorithm.

key value.

key value.

matching element, then the list does not contain the key value.

text. Test your program.

¥ n and print its transpose.

Programming in ANSI C236

and the fourth is the check digit. The check digit is computed as follows:

¥ ¥ ¥ ¥

8 CHARACTER ARRAYS AND

STRINGS

Key Terms String I strcat I strcmp I strcpy I strstr

8.1 INTRODUCTION

A string is a sequence of characters that is treated as a single data item. We have used strings in a

double quotation marks is a string constant. Example:

“Man is obviously made to think.”

printf (“\” Well Done !”\”);

“ Well Done !”

printf(“ Well Done !”);

Well Done !

Character strings are often used to build meaningful and readable programs. The common operations

performed on character strings include:

 ∑

 ∑ Combining strings together.

 ∑ Copying one string to another.

 ∑ Comparing strings for equality.

 ∑ Extracting a portion of a string.

implement them.

Programming in ANSI C238

8.2 DECLARING AND INITIALIZING STRING VARIABLES

characters. The general form of declaration of a string variable is:

char string_name[size];

The size determines the number of characters in the string_name. Some examples are:

char city[10];

char name[30];

null

size should be equal to the maximum number of

characters in the string plus one.

char city [9] = “ NEW YORK “;

char city [9]={‘N’,‘E’,‘W’,‘ ‘,‘Y’,‘O’,‘R’,‘K’,‘\0’};

The reason that city had to be 9 elements long is that the string NEW YORK contains 8 characters

char string [] = {‘G’,‘O’,‘O’,‘D’,‘\0’};

string

char str[10] = “GOOD”;

G O O D 0 0 0 0 0 0\ \ \ \ \ \

char str2[3] = “GOOD”;

char str3[5];

str3 = “GOOD”;

char s1[4] = “abc”;

char s2[4];

s2 = s1; /* Error */

Character Arrays and Strings 239

Terminating Null Character

 8.3 READING STRINGS FROM TERMINAL

Using scanf Function

The familiar input function scanf %s

characters. Example:

char address[10]

scanf(“%s”, address);

 scanf

NEW YORK

t address

The scanf

the character array should be large enough to hold the input string plus the null character. Note that

unlike previous scanf

the variable name.

The address

N

0 1 2 3 4 5 6 7 8 9

E W 0 ?? ? ? ? ?\

Note that the unused lo

char adr1[5], adr2[5];

scanf(“%s %s”, adr1, adr2);

NEW YORK

adr1 and “YORK” to adr2.

Programming in ANSI C240

Program 8.1
scanf

function.

‘Oxford Road’ is treated as two words one word.

 Program

 main()

 {

 char word1[40], word2[40], word3[40], word4[40];

 printf(“Enter text : \n”);

 scanf(“%s %s”, word1, word2);

 scanf(“%s”, word3);

 scanf(“%s”, word4);

 printf(“\n”);

 printf(“word1 = %s\nword2 = %s\n”, word1, word2);

 printf(“word3 = %s\nword4 = %s\n”, word3, word4);

 }

 Output

 Enter text :

 Oxford Road, London M17ED

 word1 = Oxford

 word2 = Road,

 word3 = London

 word4 = M17ED

 Enter text :

 Oxford-Road, London-M17ED United Kingdom

 word1 = Oxford-Road

 word2 = London-M17ED

 word3 = United

 word4 = Kingdom

 Fig. 8.1 Reading a series of words using scanf function

scanf

number of characters from the input string. Example:

scanf(“%ws”, name);

w

be stored in the string variable.

w

truncated and left unread.

Character Arrays and Strings 241

char name[10];

scanf(“%5s”, name);

R

0 1 2 3 4 5 6 7 8 9

A M 0 ?? ? ? ? ?\

K

0 1 2 3 4 5 6 7 8 9

R I 0H ? ? ? ?\S

Reading a Line of Text

scanf s ws

edit set conversion code

char line [80];

scanf(”%[^\n]”, line);

printf(“%s”, line);

Using getchar and gets Functions

function getchar. We can use this function repeatedly to read successive single characters from the

the null character is

then inserted at the end of the string. The getchar function call takes the form:

char ch;

ch = getchar();

Note that the getchar function has no parameters.

Program 8.2

terminal.

line using getchar line

and then tested for newline character. When the newline

the reading loop is terminated and the newline character is replaced by the null character to indicate the

end of character string.

Programming in ANSI C242

c is one number higher than the last character position

the index value c-1 null character is to be stored.

 Program

 #include <stdio.h>

 main()

 {

 char line[81], character;

 int c;

 c = 0;

 printf(“Enter text. Press <Return> at end\n”);

 do

 {

 character = getchar();

 line[c] = character;

 c++;

 }

 while(character != ‘\n’);

 c = c - 1;

 line[c] = ‘\0’;

 printf(“\n%s\n”, line);

 }

 Output

 Enter text. Press <Return> at end

 Programming in C is interesting.

 Programming in C is interesting.

 Enter text. Press <Return> at end

 National Centre for Expert Systems, Hyderabad.

 National Centre for Expert Systems, Hyderabad.

 Fig. 8.2 Program to read a line of text from terminal

the library function gets available in the <stdio.h>

parameter and called as under:

gets (str);

str is a string variable declared properly. It reads characters into str

scanf, it does not skip

char line [80];

gets (line);

printf (“%s”, line);

Character Arrays and Strings 243

printf(“%s”, gets(line));

(Be careful not to input more character that can be stored in the string variable used. Since C does not

check array-bounds, it may cause problems.)

string = “ABC”;
string1 = string2;

string2 into string1

Program 8.3
Write a program to copy one string into another and count the number of

characters copied.

 for loop to copy the characters contained inside string2 into

the string1 null

a null character to the string1.

 Program

 main()

 {

 char string1[80], string2[80];

 int i;

 printf(“Enter a string \n”);

 printf(“?”);

 scanf(“%s”, string2);

 for(i=0 ; string2[i] != ‘\0’; i++)

 string1[i] = string2[i];

 string1[i] = ‘\0’;

 printf(“\n”);

 printf(“%s\n”, string1);

 printf(“Number of characters = %d\n”, i);

 }

 Output

 Enter a string

 ?Manchester

 Manchester

 Number of characters = 10

 Enter a string

 ?Westminster

 Westminster

 Number of characters = 11

 Fig. 8.3 Copying one string into another

Programming in ANSI C244

Program 8.4

for the program.

 Algorithm

 Step 1 – Start

 Step 2 – Read a text string (str)

 Step 3 – Set vow = 0, cons = 0, i = 0

 Step 4 – Repeat steps 5-8 while (str[i]!=’\0’)

 Step 5 – if str[i] = ‘a’ OR str[i] = ‘A’ OR str[i] = ‘e’ OR str[i] = ‘E’ OR str[i] = ‘i’
 OR str[i] = ‘I’ OR str[i] = ‘o’ OR str[i] = ‘O’ OR str[i] = ‘u’ OR str[i] = ‘U’
 goto Step 6 else goto Step 7

 Step 6 – Increment the vowels counter by 1 (vow=vow+1)

 Step 7 – Increment the consonants counter by 1 (cons=cons+1)

 Step 8 – i = i + 1

 Step 9 – Display the number of vowels and consonants (vow, cons)

 Step 10 – Stop

 Flowchart

 Program

 #include <stdio.h>

 #include <conio.h>

 #include <string.h>

 void main()

Start

Read text string str

Is str[]= \0 ?

No

vow = 0
cons = 0

i = 0

i = i + 1

No

vow = vow + 1 cons = cons + 1

Display vow
Display cons

Stop

Is str[i] = a OR
str[i] = A OR
str[i] = e OR
str[i] = E OR
str[i] = i OR
str[i] = I OR
str[i] = o OR
str[i] = O OR
str[i] = u OR
str[i] = U ?

Yes

Yes

Character Arrays and Strings 245

 {

 char str[30];

 int vow=0,cons=0,i=0;

 clrscr();

 printf(“Enter a string: “);

 gets(str);

 while(str[i] != ‘\0’)

 {

 if(str[i]== a’ || str[i]==‘A’ || str[i]==‘e’ || str[i]==‘E’ || str[i]==‘i’

 || str[i]==‘I’ || str[i]==‘o’ || str[i]==‘O’ || str[i]==‘u’ || str[i]==‘U’)

 vow++;

 else

 cons++;

 i++;

 }

 printf(“\nNumber of Vowels = %d”,vow);

 printf(“\nNumber of Consonants = %d”,cons);

 getch();

 }

 Output

 Enter a string: Chennai

 Number of Vowels = 3

 Number of Consonants = 4

 Fig. 8.4

8.4 WRITING STRINGS TO SCREEN

Using printf Function

We have used extensively the printf function with %s format to print strings to the screen. The format

%s can be used to display an array of characters that is terminated by the null character. For example,

the statement

printf(“%s”, name);

can be used to display the entire contents of the array name.

%10.4

indicates that the

Programming in ANSI C246

Program 8.5
country

%s

printed.

.

 Program

 main()

 {

 char country[15] = “United Kingdom”;

 printf(“\n\n”);

 printf(“*123456789012345*\n”);

 printf(“ — — – – – \n”);

 printf(“%15s\n”, country);

 printf(“%5s\n”, country);

 printf(“%15.6s\n”, country);

 printf(“%-15.6s\n”, country);

 printf(“%15.0s\n”, country);

 printf(“%.3s\n”, country);

 printf(“%s\n”, country);

 printf(“——––– \n”);

 }

 Output

 123456789012345

 — — – – –

 United Kingdom

 United Kingdom

 United

 United

 Uni

 United Kingdom

 — — – – –

 Fig. 8.5 Writing strings using %s format

The printf

instance

printf(“%*.*s\n”, w, d, string);

d w.

This feature comes in handy for printing a sequence of characters.

Character Arrays and Strings 247

Program 8.6 Write a program using for loop

C

CP

CPr

CPro

.....

.....

CProgramming

CProgramming

.....

.....

CPro

CPr

CP

C

%12.*s, %.*s, and %*.1s

 Program

 main()
 {
 int c, d;
 char string[] = “CProgramming”;
 printf(“\n\n”);
 printf(“— — — — — — — — — — — — \n”);
 for(c = 0 ; c <= 11 ; c++)
 {
 d = c + 1;
 printf(“|%-12.*s|\n”, d, string);
 }
 printf(“|— — — — — — — — — — — — |\n”);
 for(c = 11 ; c >= 0 ; c— —)
 {
 d = c + 1;
 printf(“|%-12.*s|\n”, d, string);
 }
 printf(“— — — — — — — — — — — — \n”);
 }

 Output

 C
 CP
 CPr
 CPro
 CProg
 CProgr
 CProgra

Programming in ANSI C248

 CProgram
 CProgramm
 CProgrammi
 CProgrammin
 CProgramming
 CProgramming
 CProgrammin
 CProgrammi
 CProgramm
 CProgram
 CProgra
 CProgr
 CProg
 CPro
 CPr
 CP
 C

 Fig. 8.6

 C

 CP

 CPr

 CPro

 CProg

 CProgr

 CProgra

 CProgram

 CProgramm

 CProgrammi

 CProgrammin

CProgramming

CProgramming

 CProgrammin

 CProgrammi

 CProgramm

 CProgram

 CProgra

 CProgr

 CProg

 CPro

 CPr

 CP

 C

C|

CP|

CPr|

CPro|

CProg|

CProgr|

CProgra|

CProgram|

CProgramm|

CProgrammi|

CProgrammin|

CProgramming|

CProgramming|

CProgrammin|

CProgrammi|

CProgramm|

CProgram|

CProgra|

CProgr|

CProg|

CPro|

CPr|

CP|

C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

C|

 Fig. 8.7

Character Arrays and Strings 249

Using putchar and puts Functions

Like getchar putchar to output the values of character

 char ch = ‘A’;

putchar (ch);

The function putchar requires one parameter. This statement is equivalent to:

printf(“%c”, ch);

We have used putchar

function repeatedly to output a string of characters stored in an array using a loop. Example:

char name[6] = “PARIS”
for (i=0, i<5; i++)
 putchar(name[i];
putchar(‘\n’);

puts declared in the

<stdio.h>. This is a one parameter function and invoked as under:

puts (str);

str is a string variable containing a string value. This prints the value of the string variable str

segment

char line [80];
gets (line);
puts (line);

reads a line of text from the keyboard and displays it on the screen. Note that the syntax is very simple

compared to using the scanf and printf statements.

8.5 ARITHMETIC OPERATIONS ON CHARACTERS

system. The integer value depends on the local character set of the system.

x = ‘a’;
printf(“%d\n”,x);

It is also possible to perform arithmetic operations on the character constants and variables. For

x = ‘z’–1;

‘z’

x.

ch >= ‘A’ && ch <= ‘Z’

ch

Programming in ANSI C250

x = character - ‘0’;

x character

assume that the character

 x = ASCII value of ‘7’ – ASCII value of ‘0’

 = 7

The C library supports a function that converts a string of digits into their integer values. The function

takes the form

x = atoi(string);

x is an integer variable and string

segment of a program:

number = “1988”;

year = atoi(number);

number atoi converts the

number)

year.

Program 8.7
decimal and character form.

using an if statement in the for loop.

 Program

 main()

 {

 char c;

 printf(“\n\n”);

 for(c = 65 ; c <= 122 ; c = c + 1)

 {

 if(c > 90 && c < 97)

 continue;

 printf(“|%4d - %c “, c, c);

 }

 printf(“|\n”);

 }

 Output

 | 65 - A | 66 - B | 67 - C | 68 - D | 69 - E | 70 - F

 | 71 - G | 72 - H | 73 - I | 74 - J | 75 - K | 76 - L

Character Arrays and Strings 251

 | 77 - M| 78 - N| 79 - O| 80 - P| 81 - Q| 82 - R

 | 83 - S| 84 - T| 85 - U| 86 - V| 87 - W| 88 - X

 | 89 - Y| 90 - Z| 97 - a| 98 - b| 99 - c| 100 - d

 |101 - e| 102 - f| 103 - g| 104 - h| 105 - i| 106 - j

 | 107 - k| 108 - l| 109 - m| 110 - n| 111 - o| 112 - p

 | 113 - q| 114 - r| 115 - s| 116 - t| 117 - u| 118 - v

 | 119 - w| 120 - x| 121 - y| 122 - z|

 Fig. 8.8 Printing of the alphabet set in decimal and character form

8.6 PUTTING STRINGS TOGETHER

string3 = string1 + string2;

string2 = string1 + “hello”;

are not valid. The characters from string1 and string2 should be copied into the string3 one after the

 string3 should be large enough to hold the total characters.

concatenation

concatenation of three strings.

Program 8.8
namely second_name last_name. Write a program to

concatenate the three parts into one string to be called name.

The program is given in Fig. 8.9. Three for

the characters contained in the are copied into the variable name until the null character is

reached. The null character is not copied; instead it is replaced by a space by the assignment statement

name[i] = ‘ ’ ;

second_name is copied into name

by the above statement. This is achieved by the assignment statement

name[i+j+1] = second_name[j];

If i

character from second_name of name.

in the fourth cell.

name[i+j+k+2] = last_name[k];

is used to copy the characters from last_name into the proper locations of name.

name

is important to note the use of the expressions i+j+1 and i+j+k+2.

Programming in ANSI C252

 Program

 main()

 {

 int i, j, k ;

 char first_name[10] = {“VISWANATH”} ;

 char second_name[10] = {“PRATAP”} ;

 char last_name[10] = {“SINGH”} ;

 char name[30] ;

 /* Copy first_name into name */

 for(i = 0 ; first_name[i] != ‘\0’ ; i++)

 name[i] = first_name[i] ;

 /* End first_name with a space */

 name[i] = ‘ ‘ ;

 /* Copy second_name into name */

 for(j = 0 ; second_name[j] != ‘\0’ ; j++)

 name[i+j+1] = second_name[j] ;

 /* End second_name with a space */

 name[i+j+1] = ‘ ‘ ;

 /* Copy last_name into name */

 for(k = 0 ; last_name[k] != ‘\0’; k++)

 name[i+j+k+2] = last_name[k] ;

 /* End name with a null character */

 name[i+j+k+2] = ‘\0’ ;

 printf(“\n\n”) ;

 printf(“%s\n”, name) ;

 }

 Output

 VISWANATH PRATAP SINGH

 Fig. 8.9 Concatenation of strings

8.7 COMPARISON OF TWO STRINGS

if(name1 == name2)

if(name == “ABC”)

character. The comparison is done until there is a mismatch or one of the strings terminates into a null

Character Arrays and Strings 253

 i=0;

 while(str1[i] == str2[i] && str1[i] != ‘\0’

 && str2[i] != ‘\0’)

 i = i+1;

 if (str1[i] == ‘\0’ && str2[i] == ‘\0’)

 printf(“strings are equal\n”);

 else

 printf(“strings are not equal\n”);

8.8 STRING-HANDLING FUNCTIONS

handling functions.

Function Action

strcat()

strcmp()

strcpy() copies one string over another

strlen()

strcat() Function

The strcat

strcat(string1, string2);

string1 and string2 are character arrays. When the function strcat string2 is appended to

string1. It does so by removing the null character at the end of string1 and placing string2 from there.

The string at string2

0

0

0

Part1 =

Part2 =

Part3 =

Execution of the statement

01

1

1

12

2

2

3

3

3

4

4

4

5

5

5

6

6

6

7 8 9

0\V E R Y

0

0

\

\

G

B

O

A

O

D

D

Programming in ANSI C254

strcat(part1, part2);

0

0

Part1 =

will result in:

Part2 =

while the statement

01

1

1 22

2

3

3

4

4

5

5

6

6

7 8 9

0\G O O D

0\GV E R Y O O D

0

0

Part1 =

will result in:

Part3 =

01

1

1 22

2

3

3

4

4

5

5

6

6

7 8 9

0\B A D

0\BV E R Y A D

W string1 string2 is appended) is large enough to

strcat

strcat(part1,”GOOD”);

C permits nesting of strcat

strcat(strcat(string1,string2), string3);

string1.

strcmp() Function

The strcmp

strings. It takes the form:

strcmp(string1, string2);

string1 and string2 may be string variables or string constants. Examples are:

strcmp(name1, name2);

strcmp(name1, “John”);

strcmp(“Rom”, “Ram”);

strcmp(“their”, “there”);

string1 is alphabetically above string2.

Character Arrays and Strings 255

strcpy() Function

The strcpy

strcpy(string1, string2);

and assigns the contents of string2 to string1. string2 may be a character array variable or a string

strcpy(city, “DELHI”);

city.

strcpy(city1, city2);

city2 to the string variable city1 city1

should be large enough to receive the contents of city2.

strlen() Function

This function counts and returns the number of characters in a string. It takes the form

n = strlen(string);

Where n string. The argument

Program 8.9
s1, s2, and s3

constants into s1 and s2

s1 to the variable s3.

and their lengths.

strings are compared by the statement

x = strcmp(s1, s2);

s3 using the statement

strcpy(s3, s1);

s1 and s2

In this case all the three strings contain the same string constant “London”.

 Program

 #include <string.h>

 main()

 { char s1[20], s2[20], s3[20];

 int x, l1, l2, l3;

 printf(“\n\nEnter two string constants \n”);

 printf(“?”);

Programming in ANSI C256

 scanf(“%s %s”, s1, s2);

 /* comparing s1 and s2 */

 x = strcmp(s1, s2);

 if(x != 0)

 { printf(“\n\nStrings are not equal \n”);

 strcat(s1, s2); /* joining s1 and s2 */

 }

 else

 printf(“\n\nStrings are equal \n”);

 /* copying s1 to s3

 strcpy(s3, s1);

 /* Finding length of strings */

 l1 = strlen(s1);

 l2 = strlen(s2);

 l3 = strlen(s3);

 /* output */

 printf(“\ns1 = %s\t length = %d characters\n”, s1, l1);

 printf(“s2 = %s\t length = %d characters\n”, s2, l2);

 printf(“s3 = %s\t length = %d characters\n”, s3, l3);

 }

 Output

 Enter two string constants

 ? New York

 Strings are not equal

 s1 = NewYork length = 7 characters

 s2 = York length = 4 characters

 s3 = NewYork length = 7 characters

 Enter two string constants

 ? London London

 Strings are equal

 s1 = London length = 6 characters

 s2 = London length = 6 characters

 s3 = London length = 6 characters

 Fig. 8.10 Illustration of string handling functions

Program 8.10
and prints if it is a palindrome or not.

Character Arrays and Strings 257

 Program

 #include <stdio.h>

 #include <conio.h>

 #include <string.h>

 void main()

 {

 char chk=’t’, str[30];

 int len, left, right;

 printf(“\nEnter a string:”);

 scanf(“%s”, &str);

 len=strlen(str);

 left=0;

 right=len-1;

 while(left < right && chk==’t’)

 {

 if(str[left] == str[right])

 ;

 else

 chk=’f’;

 left++;

 right-;

 }

 if(chk==’t’)

 printf(“\nThe string %s is a palindrome”,str);

 else

 printf(“\nThe string %s is not a palindrome”,str);

 getch();

 }

 Output

 Enter a string: nitin

 The string nitin is a palindrome

 Fig. 8.11 Program to check if a string is palindrome or not

Other String Functions

<string.h>

strncpy

strcpy strncpy

strncpy(s1, s2, 5);

Programming in ANSI C258

s2 into the target string s1. Since the

position of s2

s1[6] =’\0’;

s1 contains a proper string.

strncmp

A variation of the function strcmp is the function strncmp. This function has three parameters as

 strncmp (s1, s2, n);

s1 to s2 and returns.

 (a) 0 if they are equal;

strncat

strncat (s1, s2, n);

s2 to the end of s1. Example:

S1 :

S2 :

S :1

After (s1, s2, 4); execution:strncat

0

0

\

\

G

B

U

A

U

A

S

G

M

R

R

L

A

U

Y

U

0\B A L A

strstr

strstr (s1, s2);

strstr (s1, “ABC”);

The function strstr searches the string s1 s2 is contained in s1

pointer. Example.

 if (strstr (s1, s2) == NULL)

 printf(“substring is not found”);

 else

 printf(“s2 is a substring of s1”);

Character Arrays and Strings 259

We also have functions to determine the existence of a character in a string. The function call

strchr(s1, ‘m’);

 strrchr(s1, ‘m’);

s1.

! Warning

 ∑

character.

 ∑

 strlen

 ∑

 ∑ strncpy

than or equal to the source string.

8.9 TABLE OF STRINGS

character array student[30][15]

C

A

H

M

B

h

h

y

a

o

a

m

d

d

m

n

e

e

r

b

d

d

r

a

a

i

a

a

s

y

g

b

b

a

a

a

r

d

d

h

 char city[] []
 {
 “Chandigarh”,
 “Madras”,
 “Ahmedabad”,
 “Hyderabad”,
 “Bombay”

 } ;

Programming in ANSI C260

city[i-1]

and therefore city[0] city[1]

Program 8.11

 Program

 #define ITEMS 5
 #define MAXCHAR 20
 main()
 {
 char string[ITEMS][MAXCHAR], dummy[MAXCHAR];
 int i = 0, j = 0;
 /* Reading the list */
 printf (“Enter names of %d items \n “,ITEMS);
 while (i < ITEMS)
 scanf (“%s”, string[i++]);
 /* Sorting begins */
 for (i=1; i < ITEMS; i++) /* Outer loop begins */
 {
 for (j=1; j <= ITEMS-i ; j++) /*Inner loop begins*/
 {
 if (strcmp (string[j-1], string[j]) > 0)
 { /* Exchange of contents */
 strcpy (dummy, string[j-1]);
 strcpy (string[j-1], string[j]);
 strcpy (string[j], dummy);
 }
 } /* Inner loop ends */
 } /* Outer loop ends */
 /* Sorting completed */
 printf (“\nAlphabetical list \n\n”);
 for (i=0; i < ITEMS ; i++)
 printf (“%s”, string[i]);
 }

 Output

 Enter names of 5 items
 London Manchester Delhi Paris Moscow
 Alphabetical list
 Delhi
 London
 Manchester
 Moscow
 Paris

 Fig. 8.12 Sorting of strings in alphabetical order

Character Arrays and Strings 261

scanf

%s

scanf.

gets function to read a

puts function in place of scanf for output.

 8.10 OTHER FEATURES OF STRINGS

 ∑ Manipulating strings using pointers.

 ∑

 ∑

Just Remember

 ∑ Character constants are enclosed in single quotes and string constants are enclosed in double

quotes.

 ∑

 ∑ Avoid processing single characters as strings.

 ∑ & string variable in the scanf function call is an error.

 ∑ It is a compile time error to assign a string to a character variable.

 ∑

 ∑

array bounds.

 ∑

 ∑ Do not use string functions on an array char

 ∑

copied is less than or equal to the source string.

 ∑ strcmp and strncmp for comparing strings.

 ∑

 ∑

 ∑

 ∑

 ∑

Case Studies

1. Counting Words in a Text

Programming in ANSI C262

while

for each line of text. The end of text is indicated by pressing the ‘Return’ key an extra time after the entire

The program checks for this special line using the test

 Program

 #include <stdio.h>

 main()

 {

 char line[81], ctr;

 int i,c,

 end = 0,

 characters = 0,

 words = 0,

 lines = 0;

 printf(“KEY IN THE TEXT.\n”);

 printf(“GIVE ONE SPACE AFTER EACH WORD.\n”);

 printf(“WHEN COMPLETED, PRESS ‘RETURN’.\n\n”);

 while(end == 0)

 {

 /* Reading a line of text */

 c = 0;

 while((ctr=getchar()) != ‘\n’)

 line[c++] = ctr;

 line[c] = ‘\0’;

 /* counting the words in a line */

 if(line[0] == ‘\0’)

 break ;

 else

 {

 words++;

 for(i=0; line[i] != ‘\0’;i++)

 if(line[i] == ‘ ‘ || line[i] == ‘\t’)

 words++;

Character Arrays and Strings 263

 }

 /* counting lines and characters */

 lines = lines +1;

 characters = characters + strlen(line);

 }

 printf (“\n”);

 printf(“Number of lines = %d\n”, lines);

 printf(“Number of words = %d\n”, words);

 printf(“Number of characters = %d\n”, characters);

 }

 Output

 KEY IN THE TEXT.

 GIVE ONE SPACE AFTER EACH WORD.

 WHEN COMPLETED, PRESS ‘RETURN’.

 Admiration is a very short-lived passion.

 Admiration involves a glorious obliquity of vision.

 Always we like those who admire us but we do not

 like those whom we admire.

 Fools admire, but men of sense approve.

 Number of lines = 5

 Number of words = 36

 Number of characters = 205

 Fig. 8.13 Counting of characters, words and lines in a text

The program also counts the number of lines read and the total number of characters in the text.

while

2. Processing of a Customer List

 Full name Telephone number

 – – –– – – – –– –

 – – –– – – – –– –

Programming in ANSI C264

 Program

 #define CUSTOMERS 10

 main()

 {

 char first_name[20][10], second_name[20][10],

 surname[20][10], name[20][20],

 telephone[20][10], dummy[20];

 int i,j;

 printf(“Input names and telephone numbers \n”);

 printf(“?”);

 for(i=0; i < CUSTOMERS ; i++)

 {

 scanf(“%s %s %s %s”, first_name[i],

 second_name[i], surname[i], telephone[i]);

 /* converting full name to surname with initials */

 strcpy(name[i], surname[i]);

 strcat(name[i], “,”);

 dummy[0] = first_name[i][0];

 dummy[1] = ‘\0’;

 strcat(name[i], dummy);

 strcat(name[i], “.”);

 dummy[0] = second_name[i][0];

 dummy[1] = ‘\0’;

 strcat(name[i], dummy);

 }

 /* Alphabetical ordering of surnames */

 for(i=1; i <= CUSTOMERS-1; i++)

 for(j=1; j <= CUSTOMERS-i; j++)

 if(strcmp (name[j-1], name[j]) > 0)

 {

Character Arrays and Strings 265

 /* Swaping names */

 strcpy(dummy, name[j-1]);

 strcpy(name[j-1], name[j]);

 strcpy(name[j], dummy);

 /* Swaping telephone numbers */

 strcpy(dummy, telephone[j-1]);

 strcpy(telephone[j-1],telephone[j]);

 strcpy(telephone[j], dummy);

 }

 /* printing alphabetical list */

 printf(“\nCUSTOMERS LIST IN ALPHABETICAL ORDER \n\n”);

 for(i=0; i < CUSTOMERS ; i++)

 printf(“ %-20s\t %-10s\n”, name[i], telephone[i]);

 }

 Output

 Input names and telephone numbers

 ?Gottfried Wilhelm Leibniz 711518

 Joseph Louis Lagrange 869245

 Jean Robert Argand 900823

 Carl Freidrich Gauss 806788

 Simon Denis Poisson 853240

 Friedrich Wilhelm Bessel 719731

 Charles Francois Sturm 222031

 George Gabriel Stokes 545454

 Mohandas Karamchand Gandhi 362718

 Josian Willard Gibbs 123145

 CUSTOMERS LIST IN ALPHABETICAL ORDER

 Argand,J.R 900823

 Bessel,F.W 719731

 Gandhi,M.K 362718

 Gauss,C.F 806788

 Gibbs,J.W 123145

 Lagrange,J.L 869245

 Leibniz,G.W 711518

 Poisson,S.D 853240

 Stokes,G.G 545454

 Sturm,C.F 222031

 Fig. 8.14 Program to alphabetize a customer list

Programming in ANSI C266

Review Questions

true or false

 (b) The gets function automatically appends the null character at the end of the string read

from the keyboard.

scanf

 (e) We cannot perform arithmetic operations on character variables.

 (f) We can assign a character constant or a character variable to an int type variable.

 (g) The function scanf

 (k) The function getchar

 (m) The input function gets has one string parameter.

 (n) The function call strcpy(s2, s1);

 (o) The function call strcmp(“abc”, “ABC”); returns a positive number.

scanf to read a line of text.

 (c) The function strncat has _____ parameters.

 (d) To use the function atoi

keyboard.

 (f) The function _______ is used to determine the length of a string.

 (g) The _________string manipulation function determines if a character is contained in a

string.

 (h) The function _____is used to sort the strings in alphabetical order.

 (i) The function call strcat (s2, s1); appends _____ to ______.

 (j) The printf may be replaced by ______function for printing strings.

getchar and scanf functions for reading strings.

null

helps in string manipulations.

strcpy

 (c) Reading using scanf

 (d) Reading using gets function gets(string);

Character Arrays and Strings 267

 8.6 Assuming the variable string

s1 and s2 in

string s3

printf (“%d”, strcmp (“push”, “pull”));

 char s1[10] = “he”, s2[20] = “she”, s3[30], s4[30];

 printf(“%s”, strcpy(s3, s1));

 printf(“%s”, strcat(strcat(strcpy(s4, s1), “or”), s2));

 printf(“%d %d”, strlen(s2)+strlen(s3), strlen(s4));

 printf(“Substring is found”);

Programming in ANSI C268

 char s1[] = “Kolkotta” ;

 char s2[] = “Pune” ;

 strcpy (s1, s2) ;

 printf(“%s”, s1) ;

 char s1[] = “NEW DELHI” ;

 char s2[] = “BANGALORE” ;

 strncpy (s1, s2, 3) ;

 printf(“%s”, s1) ;

 char s1[] = “Jabalpur” ;

 char s2[] = “Jaipur” ;

 printf(strncmp(s1, s2, 2));

 char s1[] = “ANIL KUMAR GUPTA”;

 char s2[] = “KUMAR”;

 printf (strstr (s1, s2));

 (a) strcpy and strncpy;

 (b) strcat and strncat; and

 (c) strcmp and strncmp.

Programming Exercises

language.”

Character Arrays and Strings 269

 Vehicle type Month of sales Price

 Write a program to read this data into a table of strings and output the details of a particular

palindrome

 Roll No. Name Marks obtained

 (b) List sorted on roll numbers.

strncmp () and print a

of a given substring using the function strstr ().

into another string s2.

9 USER-DEFINED FUNCTIONS

Key Terms P

9.1 INTRODUCTION

main, printf scanf

 ∑

 ∑

 ∑

 ∑

library

main printf and scanf

sqrt, cos, strcat,

9.2 NEED FOR USER-DEFINED FUNCTIONS

main main

main

subprograms

‘functions’

User-Defined Functions 271

Main Program

Function
A

Function
C

Function
B

B1 B2

Fig. 9.1 Top-down modular programming using functions

9.3 A MULTI-FUNCTION PROGRAM

functions

 void printline(void)

 {

 int i;

 for (i=1; i<40; i++)

 printf(“–”);

Programming in ANSI C272

 printf(“\n”);

 }

printline,

 void printline(void); /* declaration */

 main()

 {

 printline();

 printf(“This illustrates the use of C functions\n”);

 printline();

 }

 void printline(void)

 {

 int i;

 for(i=1; i<40; i++)

 printf(“–”);

 printf(“\n”);

 }

 ———————————————————————————————————————-

 This illustrates the use of C functions

 ———————————————————————————————————————-

 main()

 printline()

main

main,

 printline();

 printline

printline. printline

main.

printf

printline

main printline printf

printline printf

User-Defined Functions 273

 Fig. 9.2 Flow of control in a multi-function program

Modular Programming

modules

program units

Programming in ANSI C274

single-entry, single-exit

9.4 ELEMENTS OF USER-DEFINED FUNCTIONS

main

 ∑

 ∑

 ∑

e in

function call.

calling program or calling function.

function

declaration or function prototype.

9.5 DEFINITION OF FUNCTIONS

function implementation

User-Defined Functions 275

 ∑

 ∑

 function_type function_name(parameter list)

 {

 local variable declaration;

 executable statement1;

 executable statement2;

 return statement;

 }

function_type function_name(parameter list) function header and

function body,

Function Header

return

formal

Name and Type

function type

void

 void

function name

Formal Parameter List

parameter list

 formal

Programming in ANSI C276

arguments.

void

 void printline (void)

 {

 }

void printline ()

void

Function Body

function body

 return

printline return

void.

void

 (a) float mul (float x, float y)

 {

 float result; /* local variable */

 result = x * y; /* computes the product */

 return (result); /* returns the result */

 }

 (b) void sum (int a, int b)

 {

 printf (“sum = %s”, a + b); /* no local variables */

 return; /* optional */

 }

User-Defined Functions 277

 (c) void display (void)

 { /* no local variables */

 printf (“No type, no parameters”);

 /* no return statement */

 }

 Note

void return.

local variable

9.6 RETURN VALUES AND THEIR TYPES

return

one value

return

 return;

 or

 return(expression);

return

When a return

return

 if(error)

 return;

 Note return must have value

associated with it.

return

 int mul (int x, int y)

 {

 int p;

 p = x*y;

 return(p);

 }

p and y.

 return (x*y);

Programming in ANSI C278

return

 if(x <= 0)

 return(0);

 else

 return(1);

int

ints

 int product (void)

 {

 return (2.5 * 3.0);

 }

9.7 FUNCTION CALLS

actual parameters

 main()

 {

 int y;

 y = mul(10,5); /* Function call */

 printf(“%d\n”, y);

 }

mul()

return

y

main ()

int y;

int p;

p = x* y;

return (p);

int mul(int x,int y)

y = mul(10,5); /* call*/

/* local variable*/

/* x = 10, y = 5*/

User-Defined Functions 279

int mul(int x, int y)

 and y and y

p main y

mul

 printf(“%d\n”, mul(p,q));

 y = mul(p,q) / (p+q);

 if (mul(m,n)>total) printf(“large”);

 mul(a,b) = 15;

printline()

 main()

 {

 printline();

 }

Function Call

actual parameters

Programming in ANSI C280

NOTE:

9.8 FUNCTION DECLARATION

function

declaration function prototype

 ∑

 ∑

 ∑

 ∑

Function-type function-name (parameter list);

mul

int mul (int m, int n); /* Function prototype */

Points to note

int

void

mul

 int mul (int, int);

 mul (int a, int b);

 mul (int, int);

void display (void);

User-Defined Functions 281

main

global prototype

local prototype

scope

main

Prototypes: Yes or No

formal parameters

actual parameters

9.9 CATEGORY OF FUNCTIONS

Programming in ANSI C282

9.10 NO ARGUMENTS AND NO RETURN VALUES

Fig. 9.3 No data communication between functions

Program 9.1

main

printline and value

printline

value

value = principal(1+interest-rate)

 Program

 /* Function declaration */

 void printline (void);

 void value (void);

 main()

 {

 printline();

 value();

 printline();

 }

User-Defined Functions 283

 /* Function1: printline() */

 void printline(void) /* contains no arguments */

 {

 int i ;

 for(i=1; i <= 35; i++)

 printf(“%c”,’-’);

 printf(“\n”);

 }

 /* Function2: value() */

 void value(void) /* contains no arguments */

 {

 int year, period;

 float inrate, sum, principal;

 printf(“Principal amount?”);

 scanf(“%f”, &principal);

 printf(“Interest rate? “);

 scanf(“%f”, &inrate);

 printf(“Period? “);

 scanf(“%d”, &period);

 sum = principal;

 year = 1;

 while(year <= period)

 {

 sum = sum *(1+inrate);

 year = year +1;

 }

 printf(“\n%8.2f %5.2f %5d %12.2f\n”,

 principal,inrate,period,sum);

 }

 Output

 —

 Principal amount? 5000

 Interest rate? 0.12

 Period? 5

 5000.00 0.12 5 8811.71

 —

 Fig. 9.4 Functions with no arguments and no return values

Programming in ANSI C284

value

printf. When

value() main.

printline and value void.

return return

9.11 ARGUMENTS BUT NO RETURN VALUES

 main

printline

value.

calling function called function

function 2 ()fValues
of arguments

No return value

function1 ()

function2 (a)

Fig. 9.5 One-way data communication

 and n formal arguments.

value(500,0.12,5)

p r n actual arguments

formal arguments

actual and formal

one to one

User-Defined Functions 285

 Fig. 9.6 Arguments matching between the function call and the called function

a copy of the values of actual arguments is

passed into the called function.

Program 9.2

scanf

value main. principal, inrate, and period main

value(principal, inrate, period);

value.

value p,r, and n

principal, inrate, and period.

Programming in ANSI C286

p = principal;

r = inrate;

n = period;

 Program

 /* prototypes */

 void printline (char c);

 void value (float, float, int);

 main()

 {

 float principal, inrate;

 int period;

 printf(“Enter principal amount, interest”);

 printf(“ rate, and period \n”);

 scanf(“%f %f %d”,&principal, &inrate, &period);

 printline(‘Z’);

 value(principal,inrate,period);

 printline(‘C’);

 }

 void printline(char ch)

 {

 int i ;

 for(i=1; i <= 52; i++)

 printf(“%c”,ch);

 printf(“\n”);

 }

 void value(float p, float r, int n)

 {

 int year ;

 float sum ;

 sum = p ;

 year = 1;

 while(year <= n)

 {

 sum = sum * (1+r);

 year = year +1;

 }

 printf(“%f\t%f\t%d\t%f\n”,p,r,n,sum);

 }

User-Defined Functions 287

 Output

 Enter principal amount, interest rate, and period

 5000 0.12 5

 ZZ

 5000.000000 0.120000 5 8811.708984

 CC
 Fig. 9.7 Functions with arguments but no return values

local variables

value

printline

printf and scanf

 ellipsis ellipsis

9.12 ARGUMENTS WITH RETURN VALUES

value

Programming in ANSI C288

function 2 (f)

return (e)

Values
of arguments

Function result

function1()

function2 (a)

Fig. 9.8 Two-way data communication between functions

calling called functions

Program 9.3
value,

 main

printline

printf value main.

 Program

 void printline (char ch, int len);

 value (float, float, int);

 main()

 {

 float principal, inrate, amount;

 int period;

 printf(“Enter principal amount, interest”);

 printf(“rate, and period\n”);

 scanf(%f %f %d”, &principal, &inrate, &period);

 printline (‘*’ , 52);

 amount = value (principal, inrate, period);

 printf(“\n%f\t%f\t%d\t%f\n\n”,principal,

 inrate,period,amount);

 printline(‘=’,52);

 }

 void printline(char ch, int len)

 {

 int i;

 for (i=1;i<=len;i++) printf(“%c”,ch);

 printf(“\n”);

 }

User-Defined Functions 289

 value(float p, float r, int n) /* default return type */

 {

 int year;

 float sum;

 sum = p; year = 1;

 while(year <=n)

 {

 sum = sum * (l+r);

 year = year +1;

 }

 return(sum); /* returns int part of sum */

 }

 Output

 Enter principal amount, interest rate, and period

 5000 0.12 5

 5000.000000 0.1200000 5 8811.000000

 =

 Fig. 9.9 Functions with arguments and return values

main

 return(sum);

 value int, sum

main amount

amount = value (principal, inrate, period);

value p, r n

principal, inrate and period

value return(sum);

sum

main

value(principal, inrate, period) = sum;

 amount

amount

printline

printline(‘*’, 52);

Programming in ANSI C290

printline

len;

 ch = ‘*’ ;

 len = 52;

Returning Float Values

int

value

return(sum);

sum.

sum

or

 or

 return type

Program 9.4

 Program

 #include <stdio.h>

 #include <conio.h>

 #include <stdio.h>

 int minpos(float []. int);

 void main()

 {

 int n:

 float x[10] = {12.5, 3.0, 45.1, 8.2, 19.3, 10.0, 7.8, 23.7, 29.9, 5.2};

 printf(“Enter the value of n: “);

 scanf(“%d”, &n);

 if(n>=1 && n<=10)

 :

 else

 {

User-Defined Functions 291

 printf(“invalid value of n...Press any key to terminate the program..“);

 getch():

 exit(0);

 }

 printf(“Within the first %d elements of array, the first minimum value is
 stored at index %d”. n, minpos(x,n));

 getch();

 }

 int minpos(float a[]).int N)

 {

 int i.index;

 float min-9999.99:

 for(i=0;i<N;i++)

 if(a[i]<min)

 {

 min-a[i];

 index = i;

 }

 return (index);

 }

 Output

 Enter the value of n: 5

 Within the first 5 elements of array, the first minimum value is stored at index 1

 Fig. 9.10

Program 9.5
 Write a function power that computes x raised to the power y for integers x

and y and returns double-type value.

Figure 9.11 shows a power function that returns a double. The prototype declaration

double power(int, int);

appears in main, before power is called.

 Program

 main()

 {

 int x,y; /*input data */

 double power(int, int); /* prototype declaration*/

 printf(“Enter x,y:”);

 scanf(“%d %d” , &x,&y);

 printf(“%d to power %d is %f\n”, x,y,power (x,y));

 }

 double power (int x, int y);

 {

Programming in ANSI C292

 double p;

 p = 1.0 ; /* x to power zero */

 if(y >=0)

 while(y—–) /* computes positive powers */

 p *= x;

 else

 while (y++) /* computes negative powers */

 p /= x;

 return(p); /* returns double type */

 }

 Output

 Enter x,y:16 2

 16 to power 2 is 256.000000

 Enter x,y:16 -2

 16 to power -2 is 0.003906

 Fig. 9.11

main

main

main

9.13 NO ARGUMENTS BUT RETURNS A VALUE

 int get_number(void);

 main

 {

 int m = get_number();

 printf(“%d”,m);

 }

 int get_number(void)

 {

 int number;

User-Defined Functions 293

 scanf(“%d”, &number);

 return(number);

 }

9.14 FUNCTIONS THAT RETURN MULTIPLE VALUES

output parameters.

address operator indirection operator

 void mathoperation (int x, int y, int *s, int *d);

 main()

 {

 int x = 20, y = 10, s, d;

 mathoperation(x,y, &s, &d);

 printf(“s=%d\n d=%d\n”, s,d);

 }

 void mathoperation (int a, int b, int *sum, int *diff)

 {

 *sum = a+b;

 *diff = a-b;

 }

 and y s and d

 and y

s and d

sum and diff

sum and diff

s and d

 * sum = a+b;

 * diff = a-b;

Programming in ANSI C294

 a and

sum. s.

sum s.

 diff,

d. s d

*sum and *diff pointers and sum and diff pointer

int int

9.15 NESTING OF FUNCTIONS

main function1, function2,

function3,

 float ratio (int x, int y, int z);

 int difference (int x, int y);

 main()

 {

 int a, b, c;

 scanf(“%d %d %d”, &a, &b, &c);

 printf(“%f \n”, ratio(a,b,c));

 }

 float ratio(int x, int y, int z)

 {

 if(difference(y, z))

 return(x/(y-z));

 else

 return(0.0);

User-Defined Functions 295

 }

 int difference(int p, int q)

 {

 if(p != q)

 return (1);

 else

 return(0);

 }

a

b c-

 main()

 ratio()

 difference()

main ratio

 ratio difference

difference

ratio ratio

ratio difference main

 P = mul(mul(5,2),6);

mul

p 2

9.16 RECURSION

Recursion

 main()

 {

 printf(“This is an example of recursion\n”)

 main();

 }

Programming in ANSI C296

3 2

 factorial(int n)

 {

 int fact;

 if (n==1)

 return(1);

 else

 fact = n*factorial(n-1);

 return(fact);

 }

fact = n * factorial(n–1);

fact = 3 * factorial(2);

factorial

 factorial

if

9.17 PASSING ARRAYS TO FUNCTIONS

One-Dimensional Arrays

without any

User-Defined Functions 297

subscripts,

largest(a,n)

a

largest

 largest

float array[];

array

array

 main()

 {

 float largest(float a[], int n);

 float value[4] = {2.5,-4.75,1.2,3.67};

 printf(“%f\n”, largest(value,4));

 }

 float largest(float a[], int n)

 {

 int i;

 float max;

 max = a[0];

 for(i = 1; i < n; i++)

 if(max < a[i])

 max = a[i];

 return(max);

 }

largest value

a largest

main

pass by address

Program 9.6

Programming in ANSI C298

1 2

1
n

x x
i

i

n

()-

=

Â

Where x

 Program
 #include <math.h>

 #define SIZE 5

 float std_dev(float a[], int n);

 float mean (float a[], int n);

 main()

 {

 float value[SIZE];

 int i;

 printf(“Enter %d float values\n”, SIZE);

 for (i=0 ;i < SIZE ; i++)

 scanf(“%f”, &value[i]);

 printf(“Std.deviation is %f\n”, std_dev(value,SIZE));

 }

 float std_dev(float a[], int n)

 {

 int i;

 float x, sum = 0.0;

 x = mean (a,n);

 for(i=0; i < n; i++)

 sum += (x-a[i])*(x-a[i]);

 return(sqrt(sum/(float)n));

 }

 float mean(float a[],int n)

 {

 int i ;

 float sum = 0.0;

 for(i=0 ; i < n ; i++)

 sum = sum + a[i];

 return(sum/(float)n);

 }

 Output
 Enter 5 float values

 35.0 67.0 79.5 14.20 55.75

 Std.deviation is 23.231582

 Fig. 9.12 Passing of arrays to a function

User-Defined Functions 299

main, std_dev, and mean

main value std_dev

Std_dev, mean

std_dev and mean

Program 9.7

sort()

 Program

 void sort(int m, int x[]);

 main()

 {

 int i;

 int marks[5] = {40, 90, 73, 81, 35};

 printf(“Marks before sorting\n”);

 for(i = 0; i < 5; i++)

 printf(“%d “, marks[i]);

 printf(“\n\n”);

 sort (5, marks);

 printf(“Marks after sorting\n”);

 for(i = 0; i < 5; i++)

 printf(“%4d”, marks[i]);

 printf(“\n”);

Programming in ANSI C300

 }

 void sort(int m, int x[])

 {

 int i, j, t;

 for(i = 1; i <= m-1; i++)

 for(j = 1; j <= m-i; j++)

 if(x[j-1] >= x[j])

 {

 t = x[j-1];

 x[j-1] = x[j];

 x[j] = t;

 }

 }

 Output

 Marks before sorting

 40 90 73 81 35

 Marks after sorting

 35 40 73 81 90

 Fig. 9.13 Sorting of array elements using a function

 double average(int x[][N], int M, int N)

 {

 int i, j;

 double sum = 0.0;

 for (i=0; i<M; i++)

 for(j=1; j<N; j++)

 sum += x[i][j];

 return(sum/(M*N));

 }

User-Defined Functions 301

 main()

 {

 int M=3, N=2;

 double average(int [] [N], int, int);

 double mean;

 int matrix [M][N]=

 {

 {1,2},

 {3,4},

 {5,6}

 };

 mean = average(matrix, M, N);

 }

9.18 PASSING STRINGS TO FUNCTIONS

 {

 }

 void display(char str[]);

 display (names);

 names

parameter passing

Programming in ANSI C302

 ∑

 ∑

In pass by value,

In pass by pointers

9.19 THE SCOPE, VISIBILITY AND LIFETIME OF VARIABLES

storage class.

scope, visibility and longevity

scope

Longevity

visibility

internal external

created

destroyed

local or internal

User-Defined Functions 303

 main()

 {

 int number;

 – – –– –

 – – –– –

 }

auto

 main()

 {

 auto int number;

 – – –– –

 – – –– –

 }

Program 9.8

function1 and function2 m

 m

 main

main function2 function1 main

function2 main m m

 function1 m

 m function1 function2

main

m

m

 Program

 void function1(void);

 void function2(void);

 main()

 {

 int m = 1000;

 function2();

 printf(“%d\n”,m); /* Third output */

 }

 void function1(void)

 {

 int m = 10;

Programming in ANSI C304

 printf(“%d\n”,m); /* First output */

 }

 void function2(void)

 {

 int m = 100;

 function1();

 printf(“%d\n”,m); /* Second output */

 }

 Output

 10

 100

 1000

 Fig. 9.14 Working of automatic variables

auto

main alive active

in main auto

 auto

alive and active external

global

 int number;

 float length = 7.5;

 main()

 {

 – – –– –– –

 – – –– –– –

 }

 function1()

 {

 – – –– –– –

 – – –– –– –

 }

 function2()

 {

 – – –– –– –

 – – –– –– –

 }

User-Defined Functions 305

and

 int count;

 main()

 {

 count = 10;

 – – –– –

 – – –– –

 }

 function()

 {

 int count = 0;

 – – –– –

 – – –– –

 count = count+1;

 }

function count,

count in main

Program 9.9

fun2,

fun1 and

fun3. fun2 return

fun2

 Program

 int fun1(void);

 int fun2(void);

 int fun3(void);

 int x ; /* global */

 main()

 {

 x = 10 ; /* global x */

 printf(“x = %d\n”, x);

 printf(“x = %d\n”, fun1());

 printf(“x = %d\n”, fun2());

 printf(“x = %d\n”, fun3());

 }

 fun1(void)

 {

Programming in ANSI C306

 x = x + 10 ;

 }

 int fun2(void)

 {

 int x ; /* local */

 x = 1 ;

 return (x);

 }

 fun3(void)

 {

 x = x + 10 ; /* global x */

 }

 Output
 x = 10

 x = 20

 x = 1

 x = 30

 Fig. 9.15 Illustration of properties of global variables

 ∑

 ∑

 ∑

 ∑

 main()

 {

 y = 5;

 }

User-Defined Functions 307

 int y; /* global declaration */

 func1()

 {

 y = y+1;

 }

main y

y = y+1;

in fun1

main

main

 main()

 {

 extern int y; /* external declaration */

 }

 func1()

 {

 extern int y; /* external declaration */

 }

 int y; /* definition */

y external declaration y

 main()

 { int i;

 void print_out(void);

 extern float height [];

 print_out();

 }

 void print_out(void)

Programming in ANSI C308

 {

 extern float height [];

 int i;

 }

 float height[SIZE];

 extern float height[];

 main()

 {

 int i;

 void print_out(void);

 print_out();

 }

 void print_out(void)

 {

 int i;

 }

 float height[SIZE];

void print_out(void);

extern void print_out(void);

static static

static int x;

static float y;

User-Defined Functions 309

static

auto

static

Program 9.10

 Program

 void stat(void);

 main ()

 {

 int i;

 for(i=1; i<=3; i++)

 stat();

 }

 void stat(void)

 {

 static int x = 0;

 x = x+1;

 printf(“x = %d\n”, x);

 }

 Output

 x = 1

 x = 2

 x = 3

 Fig. 9.16 Illustration of static variable

 auto

stat

static

static

Programming in ANSI C310

static

 static

 register int count;

int or

register

Table 9.1 Scope and Lifetime of Variables

Storage Class Where declared Visibility (Active) Lifetime (Alive)

None

Global

static Global

None or auto

register

static Global

Nested Blocks

 block or a compound

main statement.

User-Defined Functions 311

nested blocks

a main

a a

a a

a

 int c = a + b;

a

Scope Rules

Scope

Lifetime

Rules of use

auto main

main

auto

static

Programming in ANSI C312

9.20 MULTIFILE PROGRAMS

main

m

function1 m

main m

linker

without

 file1.c file2.c

 main() int m /* global variable */

 { function2()

 extern int m; {

 int i; int i;

 } }

 function1() function3()

 { {

 int j; int count;

 } }

 Fig. 9.17

User-Defined Functions 313

 file1.c file2.c

 int m; /* global variable */ extern int m;

 main() function2()

 { {

 int i; int i;

 } }

 function1() function3()

 { {

 int j; int count;

 } }

 Fig. 9.18

declaration.

 ∑

 ∑

 ∑

 ∑

 ∑ void

 ∑ void

 ∑

 ∑ return void.

 ∑ void.

 ∑ void.

 ∑

 ∑

 ∑

 ∑

 ∑

Programming in ANSI C314

 ∑

 ∑

 ∑

 ∑

 ∑

 ∑

 ∑

 ∑ return

 ∑

 ∑ main

 ∑

 ∑

 ∑

 ∑

 ∑

 ∑ static

 ∑

 ∑

 ∑

 ∑

Case Study

Calculation of Area under a Curve

b

2

User-Defined Functions 315

Input

f(x)
h1 h2

b

A Bx

Curve

Fig. 9.19 Area under a curve

Output

Algorithm

main

input find_area

function_x trap_area

Fig. 9.20 Modular chart

Programming in ANSI C316

 Program

 #include <stdio.h>

 float start_point, /* GLOBAL VARIABLES */

 end_point,

 total_area;

 int numtraps;

 main()

 {

 void input(void);

 float find_area(float a,float b,int n); /* prototype */

 print(“AREA UNDER A CURVE”);

 input();

 total_area = find_area(start_point, end_point, numtraps);

 printf(“TOTAL AREA = %f”, total_area);

 }

 void input(void)

 {

 printf(“\n Enter lower limit:”);

 scanf(“%f”, &start_point);

 printf(“Enter upper limit:”);

 scanf(“%f”, &end_point);

 printf(“Enter number of trapezoids:”);

 scanf(“%d”, &numtraps);

 }

 float find_area(float a, float b, int n)

 {

 float base, lower, h1, h2; /* LOCAL VARIABLES */

 float function_x(float x); /* prototype */

 float trap_area(float h1,float h2,float base);/*prototype*/

 base = (b-1)/n;

 lower = a;

 for(lower =a; lower <= b-base; lower = lower + base)

 {

 h1 = function_x(lower);

 h1 = function_x(lower + base);

 total_area += trap_area(h1, h2, base);

 }

User-Defined Functions 317

 return(total_area);

 float trap_area(float height_1,float height_2,float base)

 {

 float area; /* LOCAL VARIABLE */

 area = 0.5 * (height_1 + height_2) * base;

 return(area);

 }

 float function_x(float x)

 {

 /* F(X) = X * X + 1 */

 return(x*x + 1);

 }

 Output

 AREA UNDER A CURVE

 Enter lower limit: 0

 Enter upper limit: 3

 Enter number of trapezoids: 30

 TOTAL AREA = 12.005000

 AREA UNDER A CURVE

 Enter lower limit: 0

 Enter upper limit: 3

 Enter number of trapezoids: 100

 TOTAL AREA = 12.000438

 Fig. 9.21 Computing area under a curve

true or false

main

main

 void void

Programming in ANSI C318

return

auto

int

main

User-Defined Functions 319

return

 int (fun) void;

 double fun (void)

 float fun (x, y, n);

 void fun (void, void);

 int fun (int a, b);

 fun (int, float, char);

 void fun (int a, int &b);

float average (float x, float y, float z);

double power (double a, int n – 1)

int product (int m, 10)

double minimum (double x; double y;)

int mul (int x, y)

exchange (int *a, int *b)

void sum (int a, int b, int &c) (a) void abc (int a, int b)

 {

 int c;

 return (c);

 }

 (b) int abc (int a, int b)

 {

 }

 (c) int abc (int a, int b)

 {

 double c = a + b;

 return (c);

 }

 (d) void abc (void)

 {

 return;

 }

Programming in ANSI C320

 int abc(void)

 {

 return;

 }

void xyz ();

xyx (void);

xyx (int x, int y);

xyzz ();

xyz () + xyz ();

 divide (float x, float y)

 {

 return (x / y);

 }

 int prod(int m, int n);

 main ()

 {

 int x = 10;

 int y = 20;

 int p, q;

 p = prod (x,y);

 q = prod (p, prod (x,z));

 printf (“%d %d\n”, p,q);

 }

 int prod(int a, int b)

 {

 return (a * b);

 }

 void test (int *a);

 main ()

 {

User-Defined Functions 321

 int x = 50;

 test (&x);

 printf(“%d\n”, x);

 }

 void test (int *a);

 {

 *a = *a + 50;

 }

test

 int test (int number)

 {

 int m, n = 0;

 while (number)

 {

 m = number % 10;

 if (m % 2)

 n = n + 1;

 number = number /10;

 }

 return (n);

 }

 and y

 int x = test (135);

 int y = test (246);

and y.

 and y

x

x x x

- + - +

3 5 7

3 5 7! ! !
�

1 2 3 n

Programming in ANSI C322

1

2

n

 prime

(s a) (s b) (s c)- - -

 2

User-Defined Functions 323

locate () s1 and s2 m

s2 s1 m

m

leap()

10 STRUCTURES AND UNIONS

Key Terms
10.1 INTRODUCTION

W

type, such as int or

structures,

unions

10.2 DEFINING A STRUCTURE

Structures and Unions 325

 struct book_bank

 {

 char title[20];

 char author[15];

 int pages;

 float price;

 };

struct

price structure elements or members.

structure tag

template

array of 20 characterstitle

author

pages

price

array of 15 characters

integer

float

 struct tag_name

 {

 data_type member1;

 data_type member2;

 – – – – – – – –

 – – – – – – – –

 };

Programming in ANSI C326

struct.

 struct book_bank, book1, book2, book3;

 struct book_bank

 {

 char title[20];

 char author[15];

 int pages;

 float price;

 };

 struct book_bank book1, book2, book3;

 struct book_bank

 {

Structures and Unions 327

 char title[20];

 char author[15];

 int pages;

 flat price;

 } book1, book2, book3;

 struct

 {

 } book1, book2, book3;

as global

typedef

 typedef struct

 {

 type member1;

 type member2;

 } type_name;

type_name

typedef

Program 10.1

 Struct complex /*Declaring the complex number datatype using structure*/

 {

Programming in ANSI C328

 double real;/*Real part*/

 double img;/*Imaginary part*/

 };

 Struct complex add(struct complex c1, struct complex c1)

 {

 struct complex c3;

 c3.real=c1.real+c2.real;

 c3.img=c1.img+c2.img;

 return(c3);

 }

 Struct complex product(struct complex c1, struct complex c1)

 {

 struct complex c3;

 c3.real=c1.real*c2.real-c1.img*c2.img;

 c3.img=c1.real*c2.img+c1.img*c2,real;

 return(c3);

 }

1

title,

the member operator

book1.price

 strcpy(book1.title, “BASIC”);

 strcpy(book1.author, “Balagurusamy”);

 book1.pages = 250;

 book1.price = 120.50;

 scanf(“%s\n”, book1.title);
 scanf(“%d\n”, &book1.pages);

Structures and Unions 329

Program 10.2
struct personal

screen.

printf

 Program

 struct personal

 {

 char name[20];

 int day;

 char month[10];

 int year;

 float salary;

 };

 main()

 {

 struct personal person;

 printf(“Input Values\n”);

 scanf(“%s %d %s %d %f”,

 person.name,

 &person.day,

 person.month,

 &person.year,

 &person.salary);

 printf(“%s %d %s %d %f\n”,

 person.name,

 person.day,

 person.month,

 person.year,

 person.salary);

 }

 Output

 Input Values

 M.L.Goel 10 January 1945 4500

 M.L.Goel 10 January 1945 4500.00

Programming in ANSI C330

10.5 STRUCTURE INITIALIZATION

 main()

 {

 struct

 {

 int weight;

 float height;

 }

 student = {60, 180.75};

 }

 main()

 {

 struct st_record

 {

 int weight;

 float height;

 };

 struct st_record student1 = { 60, 180.75 };

 struct st_record student2 = { 53, 170.60 };

 }

 struct st_record

 {

 int weight;

 float height;

 } student1 = {60, 180.75};

 main()

 {

 struct st_record student2 = {53, 170.60};

 }

Structures and Unions 331

 1. struct.

braces.

 ∑ ∑

10.6 COPYING AND COMPARING

 person1 = person2;

 person2 = person1;

 person1 == person2

 person1 != person2

a

Program 10.3

Programming in ANSI C332

 program

 struct class

 {

 int number;

 char name[20];

 float marks;

 };

 main()

 {

 int x;

 struct class student1 = {111,”Rao”,72.50};

 struct class student2 = {222,”Reddy”, 67.00};

 struct class student3;

 student3 = student2;

 x = ((student3.number == student2.number) &&

 (student3.marks == student2.marks)) ? 1 : 0;

 if(x == 1)

 {

 printf(“\nstudent2 and student3 are same\n\n”);

 printf(“%d %s %f\n”, student3.number,

 student3.name,

 student3.marks);

 }

 else

 printf(“\nstudent2 and student3 are different\n\n”);

 }

 Output

 student2 and student3 are same

 222 Reddy 67.000000

 Comparing and copying structure variables

Structures and Unions 333

as the slack byte.

0 1 2 3

char

slack byte

int

dot. A

dot operator

 if (student1.number == 111)

 student1.marks += 10.00;

 float sum = student1.marks + student2.marks;

 student2.marks * = 0.5;

 student1.number ++;

 ++ student1.number;

member arithmetic relational

 typedef struct

 {

 int x;

 int y;

 } VECTOR;

 VECTOR v, *ptr;

 ptr = & ;

Programming in ANSI C334

ptr

.

.

10.8 ARRAYS OF STRUCTURES

struct class student[100];

student

 struct marks

 {

 int subject1;

 int subject2;

 int subject3;

 };

 main()

 {

 struct marks student[3] =

 {{45,68,81}, {75,53,69}, {57,36,71}};

student student[0], student[1], student[2]

 student[0].subject1 = 45;

 student[0].subject2 = 65;

 student[2].subject3 = 71;

student is an

student

array student

Program 10.4
 student

Structures and Unions 335

 represents the

.

45student [0].subject 1

.subject 2

.subject 3

student [1].subject 1

.subject 2

.subject 3

student [2].subject 1

.subject 2

.subject 3

68

81

75

53

69

57

36

71

 The array student inside memory

 Program

 struct marks

 {

 int sub1;

 int sub2;

 int sub3;

 int total;

 };

 main()

 {

 int i;

 struct marks student[3] = {{45,67,81,0},

 {75,53,69,0},

 {57,36,71,0}};

 struct marks total;

 for(i = 0; i <= 2; i++)

 {

 student[i].total = student[i].sub1 +

 student[i].sub2 +

 student[i].sub3;

 total.sub1 = total.sub1 + student[i].sub1;

 total.sub2 = total.sub2 + student[i].sub2;

Programming in ANSI C336

 total.sub3 = total.sub3 + student[i].sub3;

 total.total = total.total + student[i].total;

 }

 printf(“ STUDENT TOTAL\n\n”);

 for(i = 0; i <= 2; i++)

 printf(“Student[%d] %d\n”, i+1,student[i].total);

 printf(“\n SUBJECT TOTAL\n\n”);

 printf(“%s %d\n%s %d\n%s %d\n”,

 “Subject 1 “, total.sub1,

 “Subject 2 “, total.sub2,

 “Subject 3 “, total.sub3);

 printf(“\nGrand Total = %d\n”, total.total);

 }

 Output

 STUDENT TOTAL

 Student[1] 193

 Student[2] 197

 Student[3] 164

 SUBJECT TOTAL

 Subject 1 177

 Subject 2 156

 Subject 3 221

 Grand Total = 554

 Arrays of structures: Illustration of subscripted structure variables

10.9 ARRAYS WITHIN STRUCTURES

int or

 struct marks

 {

 int number;

 float subject[3];

 } student[2];

Structures and Unions 337

subject subject[0], subject[1] subject[2].

 student[1].subject[2];

Program 10.5

 Program

 main()

 {

 struct marks

 {

 int sub[3];

 int total;

 };

 struct marks student[3] =

 {45,67,81,0,75,53,69,0,57,36,71,0};

 struct marks total;

 int i,j;

 for(i = 0; i <= 2; i++)

 {

 for(j = 0; j <= 2; j++)

 {

 student[i].total += student[i].sub[j];

 total.sub[j] += student[i].sub[j];

 }

 total.total += student[i].total;

 }

 printf(“STUDENT TOTAL\n\n”);

 for(i = 0; i <= 2; i++)

 printf(“Student[%d] %d\n”, i+1, student[i].total);

 printf(“\nSUBJECT TOTAL\n\n”);

 for(j = 0; j <= 2; j++)

 printf(“Subject-%d %d\n”, j+1, total.sub[j]);

 printf(“\nGrand Total = %d\n”, total.total);

 }

Programming in ANSI C338

 Output

 STUDENT TOTAL

 Student[1] 193

 Student[2] 197

 Student[3] 164

 STUDENT TOTAL

 Student-1 177

 Student-2 156

 Student-3 221

 Grand Total = 554

 Use of subscripted members arrays in structures

10.10 STRUCTURES WITHIN STRUCTURES

S nesting

 struct salary
 {

 char name;

 char department;

 int basic_pay;

 int dearness_allowance;

 int house_rent_allowance;

 int city_allowance;

 }

 employee;

 struct salary
 {

 char name;

 char department;

 struct
 {

 int dearness;

 int house_rent;

 int city;

 }

 allowance;
 }

 employee;

Structures and Unions 339

city can

 struct salary

 {

 struct

 {

 int dearness;

 }

 allowance,

 arrears;

 }

 employee[100];

 struct pay

 {

 int dearness;

 int house_rent;

 int city;

 };

 struct salary

 {

 char name;

 char department;

 struct pay allowance;

 struct pay arrears;

 };

 struct salary employee[100];

Programming in ANSI C340

 structure.

 struct personal_record

 {

 struct name_part name;

 struct addr_part address;

 struct date date_of_birth;

 };

 struct personal_record person1;

 Note C permits nesting upto 15 levels. However, C99 allows 63 levels of nesting.

 10.11 STRUCTURES AND FUNCTIONS

pointers

f

Structures and Unions 341

 data_type function_name(struct_type st_name)

 {

 return(expression);

 }

struct

 struct type.

return

 expression

Program 10.6

item

item item.

mul price However, the

 item

item = update(item,p_increment,q_increment);

item by the new ones.

 Program

 /* Passing a copy of the entire structure */

 struct stores

 {

 char name[20];

 float price;

 int quantity;

 };

 struct stores update (struct stores product, float p, int q);

 float mul (struct stores stock);

 main()

 {

Programming in ANSI C342

 float p_increment, value;

 int q_increment;

 struct stores item = {“XYZ”, 25.75, 12};

 printf(“\nInput increment values:”);

 printf(“ price increment and quantity increment\n”);

 scanf(“%f %d”, &p_increment, &q_increment);

 /* - */

 item = update(item, p_increment, q_increment);

 /* - */

 printf(“Updated values of item\n\n”);

 printf(“Name : %s\n”,item.name);

 printf(“Price : %f\n”,item.price);

 printf(“Quantity : %d\n”,item.quantity);

 /* - */

 value = mul(item);

 /* - */

 printf(“\nValue of the item = %f\n”, value);

 }

 struct stores update(struct stores product, float p, int q)

 {

 product.price += p;

 product.quantity += q;

 return(product);

 }

 float mul(struct stores stock)

 {

 return(stock.price * stock.quantity);

 }

 Output

 Input increment values: price increment and quantity increment

 10 12

 Updated values of item

 Name : XYZ

 Price : 35.750000

 Quantity : 24

 Value of the item = 858.000000

 Using structure as a function parameter

Structures and Unions 343

 as global mul

10.12 UNIONS

 union item

 {

 int m;

 float x;

 char c;

 } code;

1000 1001

Storage of 4 bytes

1002 1004

c

m

x

 Sharing of a storage locating by union members

 code.m = 379;

 code.x = 7859.36;

 printf(“%d”, code.m);

Programming in ANSI C344

union item abc = {100};

union item abc = {10.75};

int.

10.13 SIZE OF STRUCTURES

sizeof(struct x)

y

 sizeof(y)

y then

 sizeof(y)

y

sizeof(y)/sizeof(x)

y.

1

A

Structures and Unions 345

 struct tag-name

 {

 data-type name1: bit–length;

 data-type name2: bit–length;

 data-type nameN: bit-length;

 }

data-type is either int or or bit-length

bit-length

, where n

int

15 14

name N name 2 name 1

13 12 11 10 9 8 7 6 5 4 3 2 1 0

 1.

bit-length

 {

Programming in ANSI C346

emp

3

emp.sex = 1;

emp.age = 50;

 scanf(%d %d”, &AGE,&CHILDREN);

 emp.age = AGE;

 emp.children = CHILDREN;

 sum = sum + emp.age;

 if(emp.m_status).;

 printf(“%d\n”, emp.age);

 struct personal

 {

 char name[20]; /* normal variable */

 struct addr address; /* structure variable */

 unsigned sex : 1;

 unsigned age : 7;

 }

 emp[100];

emp

 struct pack

 {

 unsigned a:2;

Structures and Unions 347

 int count;

 unsigned b : 3;

 };

b b

 Note Other related topics such as ‘Structures with Pointers’ and ‘Structures and Linked Lists’

 are discussed in Chapter 11 and Chapter 12, respectively.

Just Remember

 ∑

 ∑

 ∑

struct.

 ∑ When we use typedef type_name

 ∑ typedef

type_name

 ∑ struct type structure.

 ∑

 ∑

 ∑

 ∑

 ∑

 ∑

 ∑

error.

 ∑

 ∑

structures is an error.

 ∑

 ∑

 ∑

 ∑

 ∑

 ∑

Programming in ANSI C348

 ∑

 ∑

as a structure.

s1 s2 title m

 Programs

 #include <stdio.h>

 #include <string.h>

 struct record

 {

 char author[20];

 char title[30];

 float price;

Structures and Unions 349

 struct

 {

 char month[10];

 int year;

 }

 date;

 char publisher[10];

 int quantity;

 };

 int look_up(struct record table[],char s1[],char s2[],int m);

 void get (char string []);

 main()

 {

 char title[30], author[20];

 int index, no_of_records;

 char response[10], quantity[10];

 struct record book[] = {

 {“Ritche”,”C Language”,45.00,”May”,1977,”PHI”,10},

 {“Kochan”,”Programming in C”,75.50,”July”,1983,”Hayden”,5},

 {“Balagurusamy”,”BASIC”,30.00,”January”,1984,”TMH”,0},

 {“Balagurusamy”,”COBOL”,60.00,”December”,1988,”Macmillan”,25}

 };

 no_of_records = sizeof(book)/ sizeof(struct record);

 do

 {

 printf(“Enter title and author name as per the list\n”);

 printf(“\nTitle: “);

 get(title);

 printf(“Author: “);

 get(author);

 index = look_up(book, title, author, no_of_records);

 if(index != -1) /* Book found */

 {

 printf(“\n%s %s %.2f %s %d %s\n\n”,

 book[index].author,

 book[index].title,

 book[index].price,

 book[index].date.month,

 book[index].date.year,

 book[index].publisher);

Programming in ANSI C350

 printf(“Enter number of copies:”);

 get(quantity);

 if(atoi(quantity) < book[index].quantity)

 printf(“Cost of %d copies = %.2f\n”,atoi(quantity),

 book[index].price * atoi(quantity));

 else

 printf(“\nRequired copies not in stock\n\n”);

 }

 else

 printf(“\nBook not in list\n\n”);

 printf(“\nDo you want any other book? (YES / NO):”);

 get(response);

 }

 while(response[0] == ‘Y’ || response[0] == ‘y’);

 printf(“\n\nThank you. Good bye!\n”);

 }

 void get(char string [])

 {

 char c;

 int i = 0;

 do

 {

 c = getchar();

 string[i++] = c;

 }

 while(c != ‘\n’);

 string[i-1] = ‘\0’;

 }

 int look_up(struct record table[],char s1[],char s2[],int m)

 {

 int i;

 for(i = 0; i < m; i++)

 if(strcmp(s1, table[i].title) == 0 &&

 strcmp(s2, table[i].author) == 0)

 return(i); /* book found */

 return(-1); /* book not found */

 }

Structures and Unions 351

 Output

 Enter title and author name as per the list

 Title: BASIC

 Author: Balagurusamy

 Balagurusamy BASIC 30.00 January 1984 TMH

 Enter number of copies:5

 Required copies not in stock

 Do you want any other book? (YES / NO):y

 Enter title and author name as per the list

 Title: COBOL

 Author: Balagurusamy

 Balagurusamy COBOL 60.00 December 1988 Macmillan

 Enter number of copies:7

 Cost of 7 copies = 420.00

 Do you want any other book? (YES / NO):y

 Enter title and author name as per the list

 Title: C Programming

 Author: Ritche

 Book not in list

 Do you want any other book? (YES / NO):n

 Thank you. Good bye!

 Program of bookshop inventory

true or false.

struct

type.

Programming in ANSI C352

typedef

.

struct

 (a) struct a,b,c;

 (b) struct abc a,b,c

 (c) abc x,y,z;

 (d) struct abc a[];

 (e) struct abc a = { };

 (f) struct abc = b, { 1+2, 3.0, “xyz”}

 (g) struct abc c = {4,5,6};

 (h) struct abc a = 4, 5.0, “xyz”;

 struct abc a,b,c;

 (a) scanf (“%d, &a);

 (b) printf (“%d”, b);

 (c) a = b;

 (d) a = b + c;

 (e) if (a>b)

 struct item_bank

 {

 int number;

 double cost;

 };

type

Structures and Unions 353

 int item_bank items[10];

 struct items[10] item_bank;

 struct item_bank items (10);

 struct item_bank items [10];

 struct items item_bank [10];

 typedef struct abc

 {

 char x;

 int y;

 float z[10];

 } ABC;

 struct abc 1;

 struct abc 2[10];

 struct ABC 3;

 ABC a,b,c;

 ABC a[10];

 struct

 typedef

 operator

 struct

 {

 int number;

 float price;

 }

 main()

 {

 }

operator

Programming in ANSI C354

 struct abc

 {

 int a;

 float b;

 };

 struct xyz

 {

 int x;

 float y;

 };

 abc a1, a2;

 xyz x1, x2;

a1 = x1;

abc.a1 = 10.75;

int m = a + x;

int n = x1.x + 10;

a1 = a2;

if (a.a1 > x.x1) . . .

if (a1.a < x1.x) . . .

if (x1 != x2) . . .

 y

p

 typedef struct product

 {

 char name [10];

 float price ;

 } PRODUCT products [10];

 main ()

 {

 union x

 {

 int a;

 float b;

 double c ;

 };

Structures and Unions 355

 printf(“%d\n”, sizeof(x));

 a.x = 10;

 printf(“%d%f%f\n”, a.x, b.x, c.x);

 c.x = 1.23;

 printf(“%d%f%f\n”, a.x, b.x, c.x);

 }

minute

,

 ∑

 ∑

 ∑

 that accepts the

 ∑

 ∑

 ∑

 ∑

Programming in ANSI C356

 ∑

 ∑

 ∑

 ∑

 ∑

 ∑

 ∑

 metric metric

metric

census

 ∑

 ∑

 ∑

 ∑

 ∑

 ∑

 ∑

 ∑

 ∑

 ∑

the

11 POINTERS

Key Terms Pointer I Memory I Pointer variables I Call by reference I Call by value

11.1 INTRODUCTION

A pointer is a derived data type in C. It is built from one of the fundamental data types available in C.

Pointers contain memory addresses as their values. Since these memory addresses are the locations in

the computer memory where program instructions and data are stored, pointers can be used to access

and manipulate data stored in the memory.

Pointers are undoubtedly one of the most distinct and exciting features of C language. It has added

a beginner, they are a powerful tool and handy to use once they are mastered.

 2. Pointers can be used to return multiple values from a function via function arguments.

 3. Pointers permit references to functions and thereby facilitating passing of functions as arguments

to other functions.

 5. Pointers allow C to support dynamic memory management.

linked lists, queues, stacks and trees.

 7. Pointers reduce length and complexity of programs.

Of course, the real power of C lies in the proper use of pointers. In this chapter, we will examine the

pointers in detail and illustrate how to use them in program development. Chapter 13 examines the use

of pointers for creating and managing linked lists.

11.2 UNDERSTANDING POINTERS

storage cells as shown in Fig. 11.1. Each cell,

commonly known as a byte, has a number called address

Programming in ANSI C358

system having 64 K memory will have its last address as 65,535.

0

Memory Cell Address

1

2

3

4

5

6

7

65,535

Fig. 11.1 Memory organisation

Whenever we declare a variable, the system allocates, somewhere in the memory, an appropriate

location to hold the value of the variable. Since, every byte has a unique address number, this location

will have its own address number. Consider the following statement

int quantity = 179;

for the integer variable quantity and puts the value 179

in that location. Let us assume that the system has

chosen the address location 5000 for quantity. We

may represent this as shown in Fig. 11.2. (Note that

occupied by that variable.)

During execution of the program, the system always

associates the name quantity with the address 5000.

to the value 179 by using either the name quantity or the address 5000. Since memory addresses are

simply numbers, they can be assigned to some variables, that can be stored in memory, like any other

variable. Such variables that hold memory addresses are called pointer variables. A pointer variable

Variable

Address

Value

Quantity

5000

179

Fig. 11.2 Representation of a variable

Pointers 359

is, therefore, nothing but a variable that contains an address, which is a location of another variable in

memory.

Remember, since a pointer is a variable, its value is also stored in the memory in another location.

Suppose, we assign the address of quantity to a variable p p and

quantity p is 5048.

quantity

P

Variable Value Address

179 5000

5000 5048

Fig. 11.3 Pointer variable

Since the value of the variable p is the address of the variable quantity, we may access the value

of quantity by using the value of p and therefore, we say that the variable p

quantity p

is the relationship between the variables p and quantity.)

Underlying Concepts of Pointers

Pointers

Pointer

constants

Pointer

values

Pointer

variables

Memory addresses within a computer are referred to as pointer constants. We cannot change

We cannot save the value of a memory address directly. We can only obtain the value through the

pointer

value.

another.

pointer value is called a pointer variable.

Programming in ANSI C360

11.3 ACCESSING THE ADDRESS OF A VARIABLE

be done with the help of the operator & available in C. We have already seen the use of this address

operator in the scanf & immediately preceding a variable returns the address of

the variable associated with it. For example, the statement

 p = &quantity;

would assign the address 5000 (the location of quantity) to the variable p & operator can be

&

 1. &125 (pointing at constants).

 2. int x[10];

 &x (pointing at array names).

 3. &(x+y) (pointing at expressions).

If x is an array, then expressions such as

&x[0] and &x[i+3]

are valid and represent the addresses of 0th and (i+3)th elements of x.

Program 11.1 Write a program to print the address of a variable along with its value.

with their respective storage locations. Note that we have used %u format for printing address values.

Memory addresses are unsigned integers.

 Program

 main()

 {

 char a;

 int x;

 float p, q;

 a = ‘A’;

 x = 125;

 p = 10.25, q = 18.76;

 printf(“%c is stored at addr %u.\n”, a, &a);

 printf(“%d is stored at addr %u.\n”, x, &x);

 printf(“%f is stored at addr %u.\n”, p, &p);

 printf(“%f is stored at addr %u.\n”, q, &q);

 }

Pointers 361

 Output

 A is stored at addr 4436.

 125 is stored at addr 4434.

 10.250000 is stored at addr 4442.

 18.760000 is stored at addr 4438.

 Fig. 11.4 Accessing the address of a variable

11.4 DECLARING POINTER VARIABLES

In C, every variable must be declared for its type. Since pointer variables contain addresses that belong

data_type *pt_name;

pt_name.

pt_name is a pointer variable.

 2. pt_name needs a memory location.

 3. pt_name points to a variable of type data_type.

For example,

 int *p; /* integer pointer */

declares the variable p as a pointer variable that points to an integer data type. Remember that the

type int refers to the data type of the variable being pointed to by p and not the type of the value of the

pointer. Similarly, the statement

 float *x; / * float pointer */

declares x

p and

x. Since the memory locations have not been assigned any values, these locations may contain some

 int *p;
P

contains
grabage

points to
unknown location

? ?

Pointer Declaration Style

Programming in ANSI C362

 x = 10;

 p = & x;

 y = *p;

 *p = 20;

 We use in this book the style 2, namely,

 int *p;

11.5 INITIALIZATION OF POINTER VARIABLES

 initialization. As

pointed out earlier, all uninitialized pointers will have some unknown values that will be interpreted as

Since the compilers do not detect these errors, the programs with uninitialized pointers will produce

erroneous results. It is therefore important to initialize pointer variables carefully before they are used

in the program.

Once a pointer variable has been declared we can use the assignment operator to initialize the

 int quantity;

 int *p; /* declaration */

 p = &quantity; /* initialization */

int *p = &quantity;

quantity must be declared before the

initialization takes place. Remember, this is an initialization of p and not *p.

We must ensure that the pointer variables always point to the corresponding type of data. For

example,

 float a, b;

 int x, *p;

 p = &a; /* wrong */

 b = *p;

will result in erroneous output because we are trying to assign the address of a variable to an

integer pointer. When we declare a pointer to be of int type, the system assumes that any address that

the pointer will hold will point to an integer variable. Since the compiler will not detect such errors, care

should be taken to avoid wrong pointer assignments.

It is also possible to combine the declaration of data variable, the declaration of pointer variable and

the initialization of the pointer variable in one step. For example,

 int x, *p = &x; /* three in one */

is perfectly valid. It declares x as an integer variable and p as a pointer variable and then initializes p to

the address of x. And also remember that the target variable x

Pointers 363

 int *p = &x, x;

is not valid.

statements are valued

 int *p = NULL;

 int *p = 0;

Pointer Flexibility

statements. Example;

int x, y, z, *p;

.

p = &x;

.

p = &y;

.

p = &z;

.

We can also use different pointers to point to the same data variable. Example;

 int x;

int *p1 = &x;

int *p2 = &x;

int *p3 = &x;

.

.

 int *p = 5360; / *absolute address */

11.6 ACCESSING A VARIABLE THROUGH ITS POINTER

Once a pointer has been assigned the address of a variable, the question remains as to how to access

usually known as the indirection operator. Another name for the indirection operator is the dereferencing

operator

 int quantity, *p, n;

 quantity = 179;

 p = &quantity;

 n = *p;

quantity and n as integer variables and p as a pointer variable pointing to

quantity and the third line assigns the address of

quantity to the pointer variable p

x y

p

z

x

p1 p2 p3

Programming in ANSI C364

returns the value of the variable of which the pointer value is the address. In this case, *p returns the

value of the variable quantity, because p is the address of quantity.

n

 p = &quantity;

 n = *p;

are equivalent to

 n = *&quantity;

which in turn is equivalent to

 n = quantity;

 In C, the assignment of pointers and addresses is always done symbolically, by means of symbolic

Program 11.2 illustrates the distinction between pointer value and the value it points to.

Program 11.2
value pointed to by a printer.

value of a variable using a pointer. You may notice that the value of the pointer ptr is 4104 and the value

 x = *(&x) = *ptr = y

 &x = &*ptr

 Program

 main()

 {

 int x, y;

 int *ptr;

 x = 10;

 ptr = &x;

 y = *ptr;

 printf(“Value of x is %d\n\n”,x);

 printf(“%d is stored at addr %u\n”, x, &x);

 printf(“%d is stored at addr %u\n”, *&x, &x);

 printf(“%d is stored at addr %u\n”, *ptr, ptr);

 printf(“%d is stored at addr %u\n”, ptr, &ptr);

 printf(“%d is stored at addr %u\n”, y, &y);

 *ptr = 25;

 printf(“\nNow x = %d\n”,x);

 }

 Output

 Value of x is 10

 10 is stored at addr 4104

Pointers 365

 10 is stored at addr 4104

 10 is stored at addr 4104

 4104 is stored at addr 4106

 10 is stored at addr 4108

 Now x = 25

 Fig. 11.5 Accessing a variable through its pointer

 ptr = &x assigns the

address of x to ptr and y = *ptr assigns the value pointed to by the pointer ptr to y.

Note the use of the assignment statement

 *ptr = 25;

 ptr. We

know that the value of ptr is the address of x and therefore, the old value of x

in effect, is equivalent to assigning 25 to x

indirectly using a pointer and the indirection operator.

x

4104

Values in the storage cells and their addressesStage

Declaration

x = 10

ptr = &x

y = *ptr

*ptr = 25

4104

4104

4104

4104

y

4108

4108

4108

4108

pointer to x

4106

4108

ptr

4106
address

address

address

address

4106

4106

4106

25

1010

10

10

10

4104

4104

4104

Fig. 11.6 Illustration of pointer assignments

Programming in ANSI C366

11.7 CHAIN OF POINTERS

It is possible to make a pointer to point to another pointer, thus creating a chain of pointers as shown.

p2 p1 variable

address 2 address 1 value

Here, the pointer variable p2 contains the address of the pointer variable p1, which points to the

 multiple indirections.

A variable that is a pointer to a pointer must be declared using additional indirection operator symbols

 int **p2;

p2 is a pointer to a pointer of int type. Remember, the pointer

p2 is not a pointer to an integer, but rather a pointer to an integer pointer.

We can access the target value indirectly pointed to by pointer to a pointer by applying the indirection

 main ()

 {

 int x, *p1, **p2;

 x = 100;

 p1 = &x; /* address of x */

 p2 = &p1 /* address of p1 */

 printf (“%d”, **p2);

 }

p1 is declared as a pointer to an integer and p2 as a

pointer to a pointer to an integer.

11.8 POINTER EXPRESSIONS

Like other variables, pointer variables can be used in expressions. For example, if p1 and p2 are

properly declared and initialized pointers, then the following statements are valid.

 y = *p1 * *p2; same as (*p1) * (*p2)

 sum = sum + *p1;

 z = 5* – *p2/ *p1; same as (5 * (– (*p2)))/(*p1)

 *p2 = *p2 + 10;

z = 5* – *p2 /*p1;

C allows us to add integers to or subtract integers from pointers, as well as to subtract one pointer

from another. p1 + 4, p2–2 and p1 – p2 are all allowed. If p1 and p2 are both pointers to the same array,

then p2 – p1 gives the number of elements between p1 and p2.

Pointers 367

 p1++;

 —p2;

 sum += *p2;

In addition to arithmetic operations discussed above, pointers can also be compared using the

 p1 > p2, p1 = = p2, and p1 != p2 are allowed. However,

any comparison of pointers that refer to separate and unrelated variables makes no sense. Comparisons

can be used meaningfully in handling arrays and strings.

We may not use pointers in division or multiplication. For example, expressions such as

 p1 / p2 or p1 * p2 or p1 / 3

Program 11.3 Write a program to illustrate the use of pointers in arithmetic operations.

illustrates the order of evaluation of expressions. For example, the expression

4* – *p2 / *p1 + 10

((4 * (–(*p2))) / (*p1)) + 10

type int, the entire evaluation is carried out using the integer arithmetic.

 Program

 main()

 {

 int a, b, *p1, *p2, x, y, z;

 a = 12;

 b = 4;

 p1 = &a;

 p2 = &b;

 x = *p1 * *p2 – 6;

 y = 4* – *p2 / *p1 + 10;

 printf(“Address of a = %u\n”, p1);

 printf(“Address of b = %u\n”, p2);

 printf(“\n”);

 printf(“a = %d, b = %d\n”, a, b);

 printf(“x = %d, y = %d\n”, x, y);

 *p2 = *p2 + 3;

 *p1 = *p2 – 5;

 z = *p1 * *p2 – 6;

 printf(“\na = %d, b = %d,”, a, b);

 printf(“ z = %d\n”, z);

 }

Programming in ANSI C368

 Output

 Address of a = 4020

 Address of b = 4016

 a = 12, b = 4

 x = 42, y = 9

 a = 2, b = 7, z = 8

 Fig. 11.7 Evaluation of pointer expressions

11.9 POINTER INCREMENTS AND SCALE FACTOR

We have seen that the pointers can be incremented like

 p1 = p2 + 2;

 p1 = p1 + 1;

and so on. Remember, however, an expression like

 p1++;

will cause the pointer p1 to point to the next value of its type. For example, if p1 is an integer pointer

with an initial value, say 2800, then after the operation p1 = p1 + 1, the value of p1 will be 2802, and not

scale factor.

characters 1 byte

integers 2 bytes

long integers 4 bytes

doubles 8 bytes

making use of the sizeof operator. For example, if x is a variable, then sizeof(x) returns the number of

bytes needed for the variable. (Systems like Pentium use 4 bytes for storing integers and 2 bytes for

short integers.)

Rules of Pointer Operations

 1. A pointer variable can be assigned the address of another variable.

 2. A pointer variable can be assigned the values of another pointer variable.

 5. An integer value may be added or subtracted from a pointer variable.

 6. When two pointers point to the same array, one pointer variable can be subtracted from another.

Pointers 369

 7. When two pointers point to the objects of the same data types, they can be compared using

relational operators.

 8. A pointer variable cannot be multiplied by a constant.

 10. A value cannot be assigned to an arbitrary address (i.e., &x = 10; is illegal).

11.10 POINTERS AND ARRAYS

x

int x[5] = {1, 2, 3, 4, 5};

1

1000 1008100610041002

Base address

x[0]Elements

Address

Value

x[1] x[2] x[3] x[4]

2 3 4 5

 x x[0] and therefore the value

of x is 1000, the location where x[0]

x = &x[0] = 1000

If we declare p as an integer pointer, then we can make the pointer p to point to the array x by the

 p = x;

 p = &x[0];

Now, we can access every value of x

between p and x

p = &x[0] (= 1000)

p+1 = &x[1] (= 1002)

p+2 = &x[2] (= 1004)

p+3 = &x[3] (= 1006)

p+4 = &x[4] (= 1008)

You may notice that the address of an element is calculated using its index and the scale factor of

the data type. For instance,

 address of x[3] = base address + (3 x scale factor of int)

 = 1000 + (3 x 2) = 1006

When handling arrays, instead of using array indexing, we can use pointers to access array elements.

Note that *(p+3) gives the value of x[3]

Programming in ANSI C370

Program 11.4
Write a program using pointers to compute the sum of all elements stored in

an array.

Since incrementing an array pointer causes it to point to the next element, we need only to add one to

p each time we go through the loop.

 Program

 main()

 {

 int *p, sum, i;

 int x[5] = {5,9,6,3,7};

 i = 0;

 p = x; /* initializing with base address of x */

 printf(“Element Value Address\n\n”);

 while(i < 5)

 {

 printf(“ x[%d] %d %u\n”, i, *p, p);

 sum = sum + *p; /* accessing array element */

 i++, p++; /* incrementing pointer */

 }

 printf(“\n Sum = %d\n”, sum);

 printf(“\n &x[0] = %u\n”, &x[0]);

 printf(“\n p = %u\n”, p);

 }

 Output

 Element Value Address

 x[0] 5 166

 x[1] 9 168

 x[2] 6 170

 x[3] 3 172

 x[4] 7 174

 Sum = 55

 &x[0] = 166

 p = 176

 Fig. 11.8 Accessing one-dimensional array elements using the pointer

It is possible to avoid the loop control variable i

 p = x;

 while(p <= &x[4])

Pointers 371

 {

 sum += *p;

 p++;

 }

Here, we compare the pointer p with the address of the last element to determine when the array

has been traversed.

dimensional array x, the expression

*(x+i) or *(p+i)

represents the element x[i]

 ((a+i)+j) or *(*(p+i)j)

1

1

0

0

p + 4

Rows

2

Columns

2

3

3

4

4

5

5

6

4,0 4,3

p

p + 1

p + 4

p + 6

(p + 4) + 3(p + 4)

p pointer to first row

pointer to ith row

pointer to first element in the ith row

pointer to jth element in the ith row

value stored in the cell (i,j)
(ith row and jth column)

p + i

*(p + i)

*(p + i) + j

((p + i) + j)

Fig. 11.9 Pointers to two-dimensional arrays

Figure 11.9 illustrates how this expression represents the element a[i][j]

array a is &a[0][0] and starting at this address, the compiler allocates contiguous space for all the

elements row-wise

a

 int a[3][4] = { {15,27,11,35},

 {22,19,31,17},

 {31,23,14,36}

 };

Programming in ANSI C372

a

15

address = &a[0] [0]

27 11

row 0 row 1 row 2

35 22 19 31 17 31 23 14 36

If we declare p as an int pointer with the initial address of &a[0][0], then

 i+j)

You may notice that, if we increment i by 1, the p

element a[2][3] is given by *(p+2 ë 4+3) = *(p+11).

row so that the compiler can determine the correct storage mapping.

11.11 POINTERS AND CHARACTER STRINGS

We have seen in Chapter 8 that strings are treated like character arrays and therefore, they are declared

char str [5] = “good”;

alternative method to create strings using pointer variables of type char

char *str = “good”;

str.

str

g

str

o o d 0\

 char * string1;

 string1 = “good”;

Note that the assignment

 string1 = “good”;

is not a string copy, because the variable string1 is a pointer, not a string.

(As pointed out in Chapter 8, C does not support copying one string to another through the assignment

operation.)

We can print the content of the string string1 using either printf or puts

 printf(“%s”, string1);

 puts (string1);

Remember, although string1

Pointers 373

Program 11.5 Write a program using pointers to determine the length of a character string.

char *cptr = name;

declares cptr name as

the initial value. Since a string is always terminated by the null character, the statement

while(*cptr != ‘\0’)

is true until the end of the string is reached.

When the while loop is terminated, the pointer cptr

the statement

length = cptr – name;

gives the length of the string name.

D

name
(5 4)

cptr
(5 9)

E L H I 0\

one memory cell (byte).

 Program

 main()

 {

 char *name;

 int length;

 char *cptr = name;

 name = “DELHI”;

 printf (“%s\n”, name);

 while(*cptr != ‘\0’)

 {

 printf(“%c is stored at address %u\n”, *cptr, cptr);

 cptr++;

 }

 length = cptr - name;

 printf(“\nLength of the string = %d\n”, length);

 }

Programming in ANSI C374

 Output

 DELHI

 D is stored at address 54

 E is stored at address 55

 L is stored at address 56

 H is stored at address 57

 I is stored at address 58

 Length of the string = 5

 Fig. 11.10 String handling by pointers

In C, a constant character string always represents a pointer to that string. And therefore the following

 char *name;

 name = “Delhi”;

name as a pointer to character and assign to name the constant

 char name[20];

 name = “Delhi”;

do not work.

11.12 ARRAY OF POINTERS

 char name [3][25];

 name is a table containing three names, each with a maximum length of 25

name table are 75 bytes.

 char *name[3] = {

 “New Zealand”,

 Australia”,

 “India”

 };

declares name to be an array of three pointers to characters, each pointer pointing to a particular name

Pointers 375

name [0]

name [1]

name [2]

New Zealand

Australia

India

N

A

I

e

u

n

e

a

a l

i

a

a

n d 0

0

0

\

\

\

w

s

d

t

i

Z

r

a

 for(i = 0; i <= 2; i++)

 printf(“%s\n”, name[i]);

 *(name[i]+j)

by pointers.

Remember the difference between the notations *p[3] and (*p)[3]

*p)[3] declares p as a pointer to an array of

three elements.

11.13 POINTERS AS FUNCTION ARGUMENTS

We have seen earlier that when an array is passed to a function as an argument, only the address of

x is an array,

when we call sort(x), the address of x[0] is passed to the function sort

for manipulating the array elements. Similarly, we can pass the address of a variable as an argument

to a function in the normal fashion. We used this method when discussing functions that return multiple

values (see Chapter 9).

When we pass addresses to a function, the parameters receiving the addresses should be pointers.

call by

reference’

 main()

 {

 int x;

 x = 20;

 change(&x); /* call by reference or address */

 printf(“%d\n”,x);

 }

 change(int *p)

 {

 *p = *p + 10;

 }

Programming in ANSI C376

When the function change() is called, the address of the variable x, not its value, is passed into

the function change(). Inside change(), the variable p is declared as a pointer and therefore p is the

address of the variable x

*p = *p + 10;

means ‘add 10 to the value stored at the address p’. Since p represents the address of x, the value of x

call by address pass by pointers

 Note restrict to the pointers passed as function parameters.

 See the Appendix “C99 Features”.

Program 11.6
Write a function using pointers to exchange the values stored in two locations

in the memory.

exchange() receives the addresses of the variables x and y and

exchanges their contents.

 Program

 void exchange (int *, int *); /* prototype */

 main()

 {

 int x, y;

 x = 100;

 y = 200;

 printf(“Before exchange : x = %d y = %d\n\n”, x, y);

 exchange(&x,&y); /* call */

 printf(“After exchange : x = %d y = %d\n\n”, x, y);

 }

 exchange (int *a, int *b)

 {

 int t;

 t = *a; /* Assign the value at address a to t */

 *a = *b; /* put b into a */

 b = t; / put t into b */

 }

 Output

 Before exchange : x = 100 y = 200

 After exchange : x = 200 y = 100

 Fig. 11.11 Passing of pointers as function parameters

Pointers 377

 3. When the function is called, the addresses are passed as actual arguments.

functions discussed in Chapter 9. Let us consider the problem sorting an array of integers discussed in

Program 9.6.

sort

 void sort (int m, int *x)

 { int i j, temp;

 for (i=1; i<= m–1; i++)

 for (j=1; j<= m–1; j++)

 if (*(x+j–1) >= *(x+j))

 {

 temp = *(x+j– 1);

 *(x+j–1) = *(x+j);

 *(x+j) = temp;

 }

 }

Note that we have used the pointer x (instead of array x[]) to receive the address of array passed

and therefore the pointer x can be used to access the array elements (as pointed out in Section 11.10).

 int score[4] = {45, 90, 71, 83};

 sort(4, score); /* Function call */

 void sort (int, int *);

Pointer parameters are commonly employed in string functions. Consider the function copy which

copies one string to another.

 copy(char *s1, char *s2)

 {

 while((*s1++ = *s2++) != ‘\0’)

 ;

 }

s2 into the string s1. Parameters s1 and s2 are the pointers to character

strings, whose initial values are passed from the calling function. For example, the calling statement

copy(name1, name2);

name1 to s1 name2

to s2.

Programming in ANSI C378

Note that the value of *s2++ is the character that s2 pointed to before s2 was incremented. Due

s2 is incremented only after the current value has been fetched. Similarly, s1 is

incremented only after the assignment has been completed.

Program 11.7
which are passed as arguments using the call by reference method.

 Program

 #include<stdio.h>

 #include<conio.h>

 void swap (int *p, *q);

 main()

 {

 int x=0;

 int y=20;

 clrstr();

 printf(“\nValue of X and Y before swapping are X=%d and Y=%d”, x,y);

 swap(&x, &y);

 printf(“\n\nValue of X and Y after swapping are X=%d and Y=%d”, x,y);

 getch();

 }

 void swap(int *p, int *q)//Value of x and y are transferred using call by reference

 {

 int r;

 r=*p;

 *p=*q;

 *q=r;

 }

 Output

 Value of X and Y before swapping are X=10 and Y=20

 Value of X and Y after swapping are X=20 and Y=10

 Fig. 11.12 Program to pass the arguments using call by reference method

11.14 FUNCTIONS RETURNING POINTERS

We have seen so far that a function can return a single value by its name or return multiple values

through pointer parameters. Since pointers are a data type in C, we can also force a function to return a

Pointers 379

 int *larger (int *, int *); /* prototype */

 main ()

 {

 int a = 10;

 int b = 20;

 int *p;

 p = larger(&a, &b); /Function call */

 printf (“%d”, *p);

 }

 int *larger (int *x, int *y)

 {

 if (*x>*y)

 return (x); / *address of a */

 else

 return (y); /* address of b */

 }

larger receives the addresses of the variables a and b, decides which one is larger

using the pointers x and y

assigned to the pointer variable p in the calling function. In this case, the address of b is returned and

assigned to p and therefore the output will be the value of b, namely, 20.

Note that the address returned must be the address of a variable in the calling function. It is an error

to return a pointer to a local variable in the called function.

11.15 POINTERS TO FUNCTIONS

A function, like a variable, has a type and an address location in the memory. It is therefore, possible to

declare a pointer to a function, which can then be used as an argument in another function. A pointer to

type (*fptr) ();

fptr is a pointer to a function, which returns type

around *fptr are necessary. Remember that a statement like

type *gptr();

would declare gptr as a function returning a pointer to type.

function to the pointer. For example, the statements

 double mul(int, int);

 double (*p1)();

 p1 = mul;

declare p1 as a pointer to a function and mul as a function and then make p1 to point to the function

mul mul, we may now use the pointer p1

(*p1)(x,y)

Programming in ANSI C380

is equivalent to

mul(x,y)

Note the parentheses around *p1.

Program 11.8 Write a program that uses a function pointer as a function argument.

is done by the function table by evaluating the function passed to it by the main.

With table, we declare the parameter f

double (*f)();

double. When table is called in the statement

table (y, 0.0, 2, 0.5);

we pass a pointer to the function y table. Note that y is not followed by a

parameter list.

During the execution of table, the statement

value = (*f)(a);

calls the function y which is pointed to by f, passing it the parameter a. y is evaluated

over the range 0.0 to 2.0 at the intervals of 0.5.

Similarly, the call

table (cos, 0.0, PI, 0.5);

passes a pointer to cos table evaluates the value of

cos over the range 0.0 to PI at the intervals of 0.5.

 Program

 #include <math.h>

 #define PI 3.1415926

 double y(double);

 double cos(double);

 double table (double(*f)(), double, double, double);

 main()

 { printf(“Table of y(x) = 2*x*x–x+1\n\n”);

 table(y, 0.0, 2.0, 0.5);

 printf(“\nTable of cos(x)\n\n”);

 table(cos, 0.0, PI, 0.5);

 }

 double table(double(*f)(),double min, double max, double step)

 { double a, value;

 for(a = min; a <= max; a += step)

 {

 value = (*f)(a);

 printf(“%5.2f %10.4f\n”, a, value);

 }

Pointers 381

 }

 double y(double x)

 {

 return(2*x*x-x+1);

 }

 Output

 Table of y(x) = 2*x*x-x+1

 0.00 1.0000

 0.50 1.0000

 1.00 2.0000

 1.50 4.0000

 2.00 7.0000

 Table of cos(x)

 0.00 1.0000

 0.50 0.8776

 1.00 0.5403

 1.50 0.0707

 2.00 -0.4161

 2.50 -0.8011

 3.00 -0.9900

 Fig. 11.13 Use of pointers to functions

Compatibility and Casting

A variable declared as a pointer is not just a pointer type variable. It is also a pointer to a

fundamental data type, such as a character. A pointer therefore always has a type associated with

it. We cannot assign a pointer of one type to a pointer of another type, although both of them have

incompatibility of pointers.

All the pointer variables store memory addresses, which are compatible, but what is not compatible

is the underlying data type to which they point to. We cannot use the assignment operator with the

pointers of different types. We can however make explicit assignment between incompatible pointer

types by using cast

int x;

char *p;

p = (char *) & x;

In such cases, we must ensure that all operations that use the pointer p must apply casting

properly.

generic

pointer that can represent any pointer type. All pointer types can be assigned to a void pointer and

void *vp;

Programming in ANSI C382

11.16 POINTERS AND STRUCTURES

of the names of arrays of structure variables. Suppose product is an array variable of struct

name product

 struct inventory

 {

 char name[30];

 int number;

 float price;

 } product[2], *ptr;

product as an array of two elements, each of the type struct inventory and

ptr as a pointer to data objects of the type struct inventory. assignment

 ptr = product;

would assign the address of the zeroth element of product to ptr ptr will now point

to product[0]. Its members can be accessed using the following notation.

 ptr –> name

 ptr –> number

 ptr –> price

–> is called the arrow operator (also known as member selection operator) and is made

up of a minus sign and a greater than sign. Note that ptr–> is simply another way of writing product[0].

When the pointer ptr

following for statement will print the values of members of all the elements of product array.

 for(ptr = product; ptr < product+2; ptr++)

 printf (“%s %d %f\n”, ptr–>name, ptr–>number, ptr–>price);

We could also use the notation

(*ptr).number

to access the member number. *ptr are necessary because the member

Program 11.9 Write a program to illustrate the use of structure pointers.

A program to illustrate the use of a structure pointer to manipulate the elements of an array of structures

ptr (of type struct invent) is also used as the loop control index in for loops.

 Program

 struct invent

 {

 char *name[20];

 int number;

 float price;

 };

Pointers 383

 main()

 {

 struct invent product[3], *ptr;

 printf(“INPUT\n\n”);

 for(ptr = product; ptr < product+3; ptr++)

 scanf(“%s %d %f”, ptr–>name, &ptr–>number, &ptr–>price);

 printf(“\nOUTPUT\n\n”);

 ptr = product;

 while(ptr < product + 3)

 {

 printf(“%–20s %5d %10.2f\n”,

 ptr–>name,

 ptr–>number,

 ptr–>price);

 ptr++;

 }

 }

 Output

 INPUT

 Washing_machine 5 7500

 Electric_iron 12 350

 Two_in_one 7 1250

 OUTPUT

 Washing machine 5 7500.00

 Electric_iron 12 350.00

 Two_in_one 7 1250.00

 Fig. 11.14 Pointer to structure variables

While using structure pointers, we should take care of the precedence of operators.

> .

 struct

 {

 int count;

 float *p; /* pointer inside the struct */

 } ptr; /* struct type pointer */

then the statement

 ++ptr–>count;

Programming in ANSI C384

increments count, not ptr. However,

 (++ptr)–>count;

increments ptr count

 ptr++ –> count;

is legal and increments ptr after accessing count.

 *ptr–>p Fetches whatever p points to.

 *ptr–>p++ Increments p after accessing whatever it points to.

 (*ptr–>p)++ Increments whatever p points to.

 *ptr++–>p Increments ptr after accessing whatever it points to.

In the previous chapter, we discussed about passing of a structure as an argument to a function.

We also saw an example where a function receives a copy of an entire structure and returns it after

and memory. We can overcome this drawback by passing a pointer to the structure and then using this

 print_invent(struct invent *item)

 {

 printf(“Name: %s\n”, item->name);

 printf(“Price: %f\n”, item->price);

 }

 print_invent(&product);

item receives the address of the structure product and therefore it must be

declared as a pointer of type struct invent, which represents the structure of product.

11.17 TROUBLES WITH POINTERS

task.

We list here some pointer errors that are more commonly committed by the programmers.

 ∑ Assigning values to uninitialized pointers

 int * p, m = 100 ;

 p = m ; / Error */

 ∑ Assigning value to a pointer variable

 int *p, m = 100 ;

 p = m; /* Error */

 ∑ Not dereferencing a pointer when required

 int *p, x = 100;

 p = &x;

 printf(“%d”,p); /* Error */

 ∑ Assigning the address of an uninitialized variable

Pointers 385

 int m, *p

 p = &m; /* Error */

 ∑ Comparing pointers that point to different objects

 char name1 [20], name2 [30];

 char *p1 = name1;

 char *p2 = name2;

 if(p1 > p2)....... /* Error */

We must be careful in declaring and assigning values to pointers correctly before using them. We

Just Remember

 ∑ Only an address of a variable can be stored in a pointer variable.

 ∑ Do not store the address of a variable of one type into a pointer variable of another type.

 ∑

 ∑

variable before it is assigned, the address of a variable.

 ∑

not for the variable to which it is pointing.

 ∑ If we want a called function to change the value of a variable in the calling function, we must pass

the address of that variable to the called function.

 ∑ When we pass a parameter by address, the corresponding formal parameter must be a pointer

variable.

 ∑ It is an error to assign a numeric constant to a pointer variable.

 ∑ It is an error to assign the address of a variable to a variable of any basic data types.

 ∑ It is an error to assign a pointer of one type to a pointer of another type without a cast (with an

exception of void pointer).

 ∑ A proper understanding of a precedence and associativity rules is very important in pointer

used.

 ∑ When an array is passed as an argument to a function, a pointer is actually passed. In the header

 ∑ A very common error is to use (or not to use) the address operator (&) and the indirection operator

Case Studies

 1. Processing of Examination Marks

 Student name Marks obtained

 S. Laxmi 45 67 38 55

 V.S. Rao 77 89 56 69

Programming in ANSI C386

It is required to compute the total marks obtained by each student and print the rank list based on

the total marks.

name and the marks in the array

marks. After computing the total marks obtained by all the students, the program prepares and prints

int marks[STUDENTS][SUBJECTS+1];

marks rowptr as the pointer to the row of marks.

rowptr

int (*rowptr)[SUBJECTS+1] = array;

Note that array is the formal argument whose values are replaced by the values of the actual argument

marks. *rowptr makes the rowptr as a pointer to an array of SUBJECTS+1

integers. Remember, the statement

int *rowptr[SUBJECTS+1];

would declare rowptr as an array of SUBJECTS+1 elements.

 When we increment the rowptr (by rowptr+1), the incrementing is done in units of the size of each

row of array, making rowptr point to the next row. Since rowptr points to a particular row, (*rowptr)[x]

points to the xth element in the row.

 Program

 #define STUDENTS 5

 #define SUBJECTS 4

 #include <string.h>

 main()

 {

 char name[STUDENTS][20];

 int marks[STUDENTS][SUBJECTS+1];

 printf(“Input students names & their marks in four subjects\n”);

 get_list(name, marks, STUDENTS, SUBJECTS);

 get_sum(marks, STUDENTS, SUBJECTS+1);

 printf(“\n”);

 print_list(name,marks,STUDENTS,SUBJECTS+1);

 get_rank_list(name, marks, STUDENTS, SUBJECTS+1);

 printf(“\nRanked List\n\n”);

 print_list(name,marks,STUDENTS,SUBJECTS+1);

 }

 /* Input student name and marks */

 get_list(char *string[],

 int array [] [SUBJECTS +1], int m, int n)

 {

Pointers 387

 int i, j, (*rowptr)[SUBJECTS+1] = array;

 for(i = 0; i < m; i++)

 {

 scanf(“%s”, string[i]);

 for(j = 0; j < SUBJECTS; j++)

 scanf(“%d”, &(*(rowptr + i))[j]);

 }

 }

 /* Compute total marks obtained by each student */

 get_sum(int array [] [SUBJECTS +1], int m, int n)

 {

 int i, j, (*rowptr)[SUBJECTS+1] = array;

 for(i = 0; i < m; i++)

 {

 (*(rowptr + i))[n-1] = 0;

 for(j =0; j < n-1; j++)

 (*(rowptr + i))[n-1] += (*(rowptr + i))[j];

 }

 }

 /* Prepare rank list based on total marks */

 get_rank_list(char *string [],

 int array [] [SUBJECTS + 1]

 int m,

 int n)

 {

 int i, j, k, (*rowptr)[SUBJECTS+1] = array;

 char *temp;

 for(i = 1; i <= m–1; i++)

 for(j = 1; j <= m–i; j++)

 if((*(rowptr + j–1))[n–1] < (*(rowptr + j))[n–1])

 {

 swap_string(string[j-1], string[j]);

 for(k = 0; k < n; k++)

 swap_int(&(*(rowptr + j–1))[k],&(*(rowptr+j))[k]);

 }

 }

Programming in ANSI C388

 /* Print out the ranked list */

 print_list(char *string[],

 int array [] [SUBJECTS + 1],

 int m,

 int n)

 {

 int i, j, (*rowptr)[SUBJECTS+1] = array;

 for(i = 0; i < m; i++)

 {

 printf(“%–20s”, string[i]);

 for(j = 0; j < n; j++)

 printf(“%5d”, (*(rowptr + i))[j]);

 printf(“\n”);

 }

 }

 /* Exchange of integer values */

 swap_int(int *p, int *q)

 {

 int temp;

 temp = *p;

 *p = *q;

 *q = temp;

 }

 /* Exchange of strings */

 swap_string(char s1[], char s2[])

 {

 char swaparea[256];

 int i;

 for(i = 0; i < 256; i++)

 swaparea[i] = ‘\0’;

 i = 0;

 while(s1[i] != ‘\0’ && i < 256)

 {

 swaparea[i] = s1[i];

 i++;

 }

 i = 0;

 while(s2[i] != ‘\0’ && i < 256)

 {

Pointers 389

 s1[i] = s2[i];

 s1[++i] = ‘\0’;

 }

 i = 0;

 while(swaparea[i] != ‘\0’)

 {

 s2[i] = swaparea[i];

 s2[++i] = ‘\0’;

 }

 }

 Output

 Input students names & their marks in four subjects

 S.Laxmi 45 67 38 55

 V.S.Rao 77 89 56 69

 A.Gupta 66 78 98 45

 S.Mani 86 72 0 25

 R.Daniel 44 55 66 77

 S.Laxmi 45 67 38 55 205

 V.S.Rao 77 89 56 69 291

 A.Gupta 66 78 98 45 287

 S.Mani 86 72 0 25 183

 R.Daniel 44 55 66 77 242

 Ranked List

 V.S.Rao 77 89 56 69 291

 A.Gupta 66 78 98 45 287

 R.Daniel 44 55 66 77 242

 S.Laxmi 45 67 38 55 205

 S.Mani 86 72 0 25 183

 Fig. 11.15 Preparation of the rank list of a class of students

2. Inventory Updating

the total value of the items in stock.

&item, the address of

the structure item, is passed to the functions update() and mul(). product and

stock, which receive the value of &item, are declared as pointers of type struct stores.

Programming in ANSI C390

 Program

 struct stores

 {

 char name[20];

 float price;

 int quantity;

 };

 main()

 {

 void update(struct stores *, float, int);

 float p_increment, value;

 int q_increment;

 struct stores item = {“XYZ”, 25.75, 12};

 struct stores *ptr = &item;

 printf(“\nInput increment values:”);

 printf(“ price increment and quantity increment\n”);

 scanf(“%f %d”, &p_increment, &q_increment);

 /* - */

 update(&item, p_increment, q_increment);

 /* - */

 printf(“Updated values of item\n\n”);

 printf(“Name : %s\n”,ptr–>name);

 printf(“Price : %f\n”,ptr–>price);

 printf(“Quantity : %d\n”,ptr–>quantity);

 /* - */

 value = mul(&item);

 /* - */

 printf(“\nValue of the item = %f\n”, value);

 }

 void update(struct stores *product, float p, int q)

 {

 product–>price += p;

 product–>quantity += q;

 }

 float mul(struct stores *stock)

 {

Pointers 391

 return(stock–>price * stock–>quantity);

 }

 Output

 Input increment values: price increment and quantity increment

 10 12

 Updated values of item

 Name : XYZ

 Price : 35.750000

 Quantity : 24

 Value of the item = 858.000000

 Fig. 11.16 Use of structure pointers as function parameters

Review Questions

 11.1 State whether the following statements are true or false.

 (a) Pointer constants are the addresses of memory locations.

 (b) Pointer variables are declared using the address operator.

 (d) Pointers to pointers is a term used to describe pointers whose contents are the address of

another pointer.

 (f) An integer can be added to a pointer.

 (g) A pointer can never be subtracted from another pointer.

 (h) When an array is passed as an argument to a function, a pointer is passed.

 (j) Value of a local variable in a function can be changed by another function.

 (a) A pointer variable contains as its value the _____ of another variable.

pointer.

 11.3 What is a pointer? How can it be initialised?

 11.4 A pointer in C language is

 (a) address of some location

 (b) useful to describe linked list

Programming in ANSI C392

 (c) can be used to access elements of an array

 (d) All of the above.

 (a) int a, *b = &a;

 (b) int p, *p;

 (c) char *s;

 (d) a = (float *) &x);

 (e) double(*f)();

 11.6 If m and n have been declared as integers and p1 and p2 as pointers to integers, then state

errors, if any, in the following statements.

 (a) p1 = &m;

 (b) p2 = n;

 (c) *p1 = &n;

 (d) p2 = &*&m;

 (e) m = p2–p1;

 (f) p1 = &p2;

 (g) m = *p1 + *p2++;

 (a) int x = 10;

 (b) int *y = 10;

 (c) int a, *b = &a;

 (d) int m;

 int **x = &m;

 int x = 10, y = 10;

 int *p1 = &x, *p2 = &y;

 What is the value of each of the following expressions?

 11.10 Describe typical applications of pointers in developing programs.

 11.11 What are the arithmetic operators that are permitted on pointers?

 11.12 What is printed by the following program?

 int m = 100’;

 int * p1 = &m;

 int **p2 = &p1;

 printf(“%d”, **p2);

11.13 What is wrong with the following code?

 int **p1, *p2;

 p2 = &p1;

11.14 Assuming name as an array of 15 character length, what is the difference between the following

two expressions?

Pointers 393

 (a) name + 10; and

 11.15 What is the output of the following segment?

 int m[2];

 *(m+1) = 100;

 *m = *(m+1);

 printf(“%d”, m [0]);

 11.16 What is the output of the following code?

 int m [2];

 int *p = m;

 m [0] = 100 ;

 m [1] = 200 ;

 printf(“%d %d”, ++*p, *p);

11.17 What is the output of the following program?

 int f(char *p);

 main ()

 {

 char str[] = “ANSI”;

 printf(“%d”, f(str));

 }

 int f(char *p)

 {

 char *q = p;

 while (*++p)

 ;

 return (p-q);

 }

search()

 {

 }

 {

 }

 Are they equivalent? Explain.

 11.19 Do the declarations

 char s [5] ;

 char *s;

 represent the same? Explain.

 11.20 Which one of the following is the correct way of declaring a pointer to a function? Why?

Programming in ANSI C394

Programming Exercises

 11.1 Write a program using pointers to read in an array of integers and print its elements in reverse

order.

 11.2 We know that the roots of a quadratic equation of the form

 ax2 + bx + c = 0

 x
1
=

- + -b b ac

a

square-root()2 4

2

 x
2
 =

- - -b b ac

a

square-root()2 4

2

 11.3 Write a function that receives a sorted array of integers and an integer value, and inserts the

value in its correct place.

 11.4 Write a function using pointers to add two matrices and to return the resultant matrix to the calling

function.

string with no holes.

 11.6 Write a function day_name that receives a number n and returns a pointer to a character string

static table

of character strings local to the function.

 sort

function that receives pointers to the functions strcmp and swap.sort in turn should call these

functions via the pointers.

 11.8 Given an array of sorted list of integer numbers, write a function to search for a particular item,

using the method of binary search. And also show how this function may be used in a program.

table is sorted, if the required value is smaller, we know that all values greater than the middle

applied recursively till the target value is found.)

 11.9 Write a function (using a pointer parameter) that reverses the elements of a given array.

 11.10 Write a function (using pointer parameters) that compares two integer arrays to see whether they

12 FILE MANAGEMENT IN C

Key Terms

Filename I ftell I rewind I fseek I Command line argument

12.1 INTRODUCTION

Until now we have been using the functions such as scanf and printf to read and write data. These are

console oriented I/O functions, which always use the terminal (keyboard and screen) as the target place.

data and in such situations, the console oriented I/O operations pose two major problems.

 1. It becomes cumbersome and time consuming to handle large volumes of data through terminals.

 2. The entire data is lost when either the program is terminated or the computer is turned off.

read whenever necessary, without destroying the data. This method employs the concept of to store

 ∑

 ∑

 ∑

 ∑

 ∑

low-level I/O

and uses UNIX system calls. The second method is referred to as the high-level I/O operation and uses

that are available in the C library. They are listed in Table 12.1.

There are many other functions. Not all of them are supported by all compilers. You should check

your C library before using a particular I/O function.

12.2 DEFINING AND OPENING A FILE

Programming in ANSI C396

 1. Filename.

 2. Data structure.

 3. Purpose.

Filename

contain two parts, a primary name and an optional period

Input.data

store

PROG.C

Student.c

FILE

FILE

FILE *fp;

fp = fopen(“filename”, “mode”);

fp as a “pointer to the data type FILE”. As stated earlier,

FILE

FILE type pointer fp. This pointer, which contains all the information

Table 12.1

Operation

fopen()

fclose()

getc()

putc()

fprintf()

fscanf()

getw()

putw()

fseek()

ftell()

bytes from the start).

rewind()

File Management in C 397

 r

 w

 a

otherwise an error occurs.

 FILE *p1, *p2;

 p1 = fopen(“data”, “r”);

 p2 = fopen(“results”, “w”);

data is opened for reading and results is opened for writing. In case, the results

data

will occur.

 r+

 w+ Same as w

 a+ Same as a

use.

12.3 CLOSING A FILE

fclose(file_pointer);

 FILE pointer

of a program.

.....

.....

FILE *p
1
, *p

2
;

p1 = fopen(“INPUT”, “w”);

p2 = fopen(“OUTPUT”, “r”);

Programming in ANSI C398

.....

.....

fclose(p1);

fclose(p2);

.....

12.4 INPUT/OUTPUT OPERATIONS ON FILES

are listed in Table 12.1.

The getc and putc

 getc and putc. These are analogous to getchar and putchar

w

fp1. Then, the statement

putc(c, fp1);

writes the character contained in the character variable c FILE pointer fp1.

Similarly, getc

the statement

c = getc(fp2);

 getc or putc. The getc will

Program 12.1
INPUT,

again read the same data from the INPUT

A program and the related input and output data are shown in Fig.12.1. We enter the input data via

INPUT. The end of the data

is indicated by entering an EOF character, which is in the reference system. (This may be

 Program

 #include <stdio.h>

 main()

 {

File Management in C 399

 FILE *f1;

 char c;

 printf(“Data Input\n\n”);

 /* Open the file INPUT */

 f1 = fopen(“INPUT”, “w”);

 /* Get a character from keyboard */

 while((c=getchar()) != EOF)

 /* Write a character to INPUT */

 putc(c,f1);

 /* Close the file INPUT */

 fclose(f1);

 printf(“\nData Output\n\n”);

 /* Reopen the file INPUT */

 f1 = fopen(“INPUT”,”r”);

 /* Read a character from INPUT*/

 while((c=getc(f1)) != EOF)

 /* Display a character on screen */

 printf(“%c”,c);

 /* Close the file INPUT */

 fclose(f1);

 }

 Output

 Data Input

 This is a program to test the file handling

 features on this system^Z

 Data Output

 This is a program to test the file handling

 features on this system

 Fig. 12.1

character, and displays it on the screen. Reading is terminated when getc

Programming in ANSI C400

The getw and putw

The getw and putw getc and putc functions and

are used to read and write integer values. These functions would be useful when we deal with only

integer data. The general forms of getw and putw

putw(integer, fp);

getw(fp);

Program 12.2 illustrates the use of putw and getw functions.

Program 12.2
DATA contains a series of integer numbers. Code a program

ODD EVEN.

f1, f2 and f3.

 containing integer values is created. The integer values are read from the terminal

 DATA with the help of the statement

putw(number, f1);

DATA for reading, ODD and EVEN for writing. The contents of DATA

integer by integer, by the function getw(f1) and written to ODD or EVEN

Note that the statement

(number = getw(f1)) != EOF

reads a value, assigns the same to number

ODD and EVEN opened for writing are closed before they are reopened for reading.

 Program

 #include <stdio.h>

 main()

 {

 FILE *f1, *f2, *f3;

 int number, i;

 printf(“Contents of DATA file\n\n”);

 f1 = fopen(“DATA”, “w”); /* Create DATA file */

 for(i = 1; i <= 30; i++)

 {

File Management in C 401

 scanf(“%d”, &number);

 if(number == -1) break;

 putw(number,f1);

 }

 fclose(f1);

 f1 = fopen(“DATA”, “r”);

 f2 = fopen(“ODD”, “w”);

 f3 = fopen(“EVEN”, “w”);

 /* Read from DATA file */

 while((number = getw(f1)) != EOF)

 {

 if(number %2 == 0)

 putw(number, f3); /* Write to EVEN file */

 else

 putw(number, f2); /* Write to ODD file */

 }

 fclose(f1);

 fclose(f2);

 fclose(f3);

 f2 = fopen(“ODD”,”r”);

 f3 = fopen(“EVEN”, “r”);

 printf(“\n\nContents of ODD file\n\n”);

 while((number = getw(f2)) != EOF)

 printf(“%4d”, number);

 printf(“\n\nContents of EVEN file\n\n”);

 while((number = getw(f3)) != EOF)

 printf(“%4d”, number);

 fclose(f2);

 fclose(f3);

 }

Programming in ANSI C402

 Output

 Contents of DATA file

 111 222 333 444 555 666 777 888 999 000 121 232 343 454 565 –1

 Contents of ODD file

 111 333 555 777 999 121 343 565

 Contents of EVEN file

 222 444 666 888 0 232 454

 Fig. 12.2

The fprintf and fscanf

support two other functions, namely fprintf and fscanf

simultaneously.

The functions fprintf and fscanf perform I/O operations that are identical to the familar printf and

scanf

fprintf is

fprintf(fp, “control string”, list);

where fp

 may include variables, constants and

fprintf(f1, “%s %d %f”, name, age, 7.5);

name is an array variable of type char and age is an int variable.

The general format of fscanf is

fprintf(fp, “control string”, list);

fscanf(f2, “%s %d”, item, &quantity);

scanf, fscanf

is reached, it returns the value EOF.

Program 12.3

 Item name Number Price Quantity

File Management in C 403

 the inventory table with the value of each item.

is read using the function fscanf stdin, which refers to the terminal and it is then written to

fp. fp

 Program

 #include <stdio.h>

 main()

 {

 FILE *fp;

 int number, quantity, i;

 float price, value;

 char item[10], filename[10];

 printf(“Input file name\n”);

 scanf(“%s”, filename);

 fp = fopen(filename, “w”);

 printf(“Input inventory data\n\n”);

 printf(“Item name Number Price Quantity\n”);

 for(i = 1; i <= 3; i++)

 {

 fscanf(stdin, “%s %d %f %d”,

 item, &number, &price, &quantity);

 fprintf(fp, “%s %d %.2f %d”,

 item, number, price, quantity);

 }

 fclose(fp);

 fprintf(stdout, “\n\n”);

 fp = fopen(filename, “r”);

 printf(“Item name Number Price Quantity Value\n”);

 for(i = 1; i <= 3; i++)

 {

Programming in ANSI C404

 fscanf(fp, “%s %d %f d”,item,&number,&price,&quantity);

 value = price * quantity;

 fprintf(stdout, “%-8s %7d %8.2f %8d %11.2f\n”,

 item, number, price, quantity, value);

 }

 fclose(fp);

 }

 Output

 Input file name

 INVENTORY

 Input inventory data

 Item name Number Price Quantity

 AAA-1 111 17.50 115

 BBB-2 125 36.00 75

 C-3 247 31.75 104

 Item name Number Price Quantity Value

 AAA-1 111 17.50 115 2012.50

 BBB-2 125 36.00 75 2700.00

 C-3 247 31.75 104 3302.00

 Fig. 12.3

12.5 ERROR HANDLING DURING I/O OPERATIONS

If we fail to check such read and write errors, a program may behave abnormally when an error

occurs. An unchecked error may result in a premature termination of the program or incorrect output.

and that can help us detect I/O

File Management in C 405

The FILE pointer as its only

returns zero otherwise. If fp

 if(feof(fp))

 printf(“End of data.\n”);

The FILE pointer as its argument

and returns a nonzero integer if an error has been detected up to that point, during processing. It returns

zero otherwise. The statement

 if(ferror(fp) != 0)

 printf(“An error has occurred.\n”);

would print the error message, if the reading is not successful.

 if(fp == NULL)

 printf(“File could not be opened.\n”);

Program 12.4

NULL pointer test and function. When we

fopen(“TETS”, “r”);

returns a NULL

Similarly, the call

 Program

 #include <stdio.h>

 main()

 {

 char *filename;

 FILE *fp1, *fp2;

 int i, number;

 fp1 = fopen(“TEST”, “w”);

 for(i = 10; i <= 100; i += 10)

 putw(i, fp1);

 fclose(fp1);

Programming in ANSI C406

 printf(“\nInput filename\n”);

 open_file:

 scanf(“%s”, filename);

 if((fp2 = fopen(filename,”r”)) == NULL)

 {

 printf(“Cannot open the file.\n”);

 printf(“Type filename again.\n\n”);

 goto open_file;

 }

 else

 for(i = 1; i <= 20; i++)

 { number = getw(fp2);

 if(feof(fp2))

 {

 printf(“\nRan out of data.\n”);

 break;

 }

 else

 printf(“%d\n”, number);

 }

 fclose(fp2);

 }

 Output

 Input filename

 TETS

 Cannot open the file.

 Type filename again.

 TEST

 10

 20

 30

 40

 50

File Management in C 407

 60

 70

 80

 90

 100

 Ran out of data.

 Fig. 12.4

12.6 RANDOM ACCESS TO FILES

reading the other parts. This can be achieved with the help of the functions fseek, ftell, and rewind

available in the I/O library.

ftell that corresponds to the current position.

n = ftell(fp);

n would give the relative offset (in bytes) of the current position. This means that n bytes have already

been read (or written).

rewind

rewind(fp);

n = ftell(fp);

would assign 0 to n rewind. Remember,

reading or writing, a rewind is done implicitly.

fseek

fseek(file_ptr, offset, position);

is a number or variable of type long, and is

an integer number. The

 The

 1 Current position

The offset may be positive, meaning move forwards, or negative, meaning move backwards.

fseek

Programming in ANSI C408

Table 12.2

Statement Meaning

Go to the beginning.

(Similar to rewind)

Stay at the current position.

(Rarely used)

Go forward by m bytes.

Go backward by m bytes from the current position.

Go backward by m bytes from the end. (Positions

When the operation is successful, fseek

fseek returns –1 (minus one). It is good practice to check

whether an error has occurred or not, before proceeding further.

Program 12.5 Write a program that uses the functions ftell and fseek.

A program employing ftell and fseek RANDOM

 Character

 stored – – – –> A B C . . . Z

the end and printing the same on the screen.

n of

fseek(fp,n,0)

fseek(fp,–1L,2);

by the function

fseek(fp, –2L, 1);

or not. The loop is terminated as soon as it crosses it.

File Management in C 409

 Program

 #include <stdio.h>

 main()

 {

 FILE *fp;

 long n;

 char c;

 fp = fopen(“RANDOM”, “w”);

 while((c = getchar()) != EOF)

 putc(c,fp);

 printf(“No. of characters entered = %ld\n”, ftell(fp));

 fclose(fp);

 fp = fopen(“RANDOM”,”r”);

 n = 0L;

 while(feof(fp) == 0)

 {

 fseek(fp, n, 0); /* Position to (n+1)th character */

 printf(“Position of %c is %ld\n”, getc(fp),ftell(fp));

 n = n+5L;

 }

 putchar(‘\n’);

 fseek(fp,–1L,2); /* Position to the last character */

 do

 {

 putchar(getc(fp));

 }

 while(!fseek(fp,–2L,1));

 fclose(fp);

 }

 Output

 ABCDEFGHIJKLMNOPQRSTUVWXYZ^Z

 No. of characters entered = 26

 Position of A is 0

 Position of F is 5

Programming in ANSI C410

 Position of K is 10

 Position of P is 15

 Position of U is 20

 Position of Z is 25

 Position of is 30

 ZYXWVUTSRQPONMLKJIHGFEDCBA

 Fig. 12.5 fseek and ftell

Program 12.6

append()

n

are done under the control of a while n and is

 Program

 #include <stdio.h>

 struct invent_record

 {

 char name[10];

 int number;

 float price;

 int quantity;

 };

 main()

 {

 struct invent_record item;

 char filename[10];

 int response;

 FILE *fp;

 long n;

 void append (struct invent_record *x, file *y);

 printf(“Type filename:”);

 scanf(“%s”, filename);

File Management in C 411

 fp = fopen(filename, “a+”);

 do

 {

 append(&item, fp);

 printf(“\nItem %s appended.\n”,item.name);

 printf(“\nDo you want to add another item\

 (1 for YES /0 for NO)?”);

 scanf(“%d”, &response);

 } while (response == 1);

 n = ftell(fp); /* Position of last character */

 fclose(fp);

 fp = fopen(filename, “r”);

 while(ftell(fp) < n)

 {

 fscanf(fp,”%s %d %f %d”,

 item.name, &item.number, &item.price, &item.quantity);

 fprintf(stdout,”%-8s %7d %8.2f %8d\n”,

 item.name, item.number, item.price, item.quantity);

 }

 fclose(fp);

 }

 void append(struct invent_record *product, File *ptr)

 {

 printf(“Item name:”);

 scanf(“%s”, product–>name);

 printf(“Item number:”);

 scanf(“%d”, &product–>number);

 printf(“Item price:”);

 scanf(“%f”, &product–>price);

 printf(“Quantity:”);

 scanf(“%d”, &product–>quantity);

 fprintf(ptr, “%s %d %.2f %d”,

 product–>name,

 product–>number,

 product–>price,

 product–>quantity);

 }

Programming in ANSI C412

 Output

 Type filename:INVENTORY

 Item name:XXX

 Item number:444

 Item price:40.50

 Quantity:34

 Item XXX appended.

 Do you want to add another item(1 for YES /0 for NO)?1

 Item name:YYY

 Item number:555

 Item price:50.50

 Quantity:45

 Item YYY appended.

 Do you want to add another item(1 for YES /0 for NO)?0

 AAA-1 111 17.50 115

 BBB-2 125 36.00 75

 C-3 247 31.75 104

 XXX 444 40.50 34

 YYY 555 50.50 45

 Fig. 12.6

Program 12.7

 Program

 #include <stdio.h>

 #include <conio.h>

 #include <stdlib.h>

 #include <string.h>

 void main(int argc, char *argv[])

 {

 FILE *fs;

 Char str[100];

 int i,n,j;

 if(argc!=3)/*Checking the number of arguments given at command line*/

 {

File Management in C 413

 puts(“Improper number of arguments.”);

 exit(0);

 }

 n=atoi(argv[2]);

 fs = fopen(argv[1], “r“);/*Opening the souce file in read mode*/

 if(fs==NULL)

 {

 printf(“Source file cannot be opened.”);

 exit(0);

 }

 i=0;

 while(1)

 {

 if(str[i]=fgetc(fs)!=EOF)/*Reading contents of file character by character*/

 j=i+1:

 else

 break;

 }

 fclose(fs);

 fs=fopen(argv[1],”w”);/*Opening the file in write mode*/

 if(n<0||n>strlen(str))

 {

 printf(“Incorrect value of n. Program will terminate...\n\n”);

 getch();

 exit(1);

 }

 j=strlen(str);

 for (i=1;i<=n;i++)

 {

 fputc(str[j],fs);

 j–;

 }

 fclose(fs);

 printf(“\n%d characters of the file successfully printed in reverse order”,n);

 getch();

 }

Programming in ANSI C414

 Output

 D:\TC\BIN\program source.txt 5

 5 characters of the file successfully printed in reverse order

 Fig. 12.7

 12.7 COMMAND LINE ARGUMENTS

What is a command line argument? It is a parameter supplied to a program when the program is

X_FILE

we may use a command line like

where PROGRAM

parameters get into the program?

We know that every C program should have one main

 main can take two arguments called argc and argv

main

the system.

 argc

The argv

argc

 argc is three and argv

 argv[0] –> PROGRAM

 main(int arge, char *argv[])

 {

 }

argv[0] always

represents the program name.

Program 12.8

main

arguments is 9.

File Management in C 415

The argument vector argv[1]

fp = fopen(argv[1], “w”);

Program

 #include <stdio.h>

 main(int arge, char *argv[])

 {

 FILE *fp;

 int i;

 char word[15];

 fp = fopen(argv[1], “w”); /* open file with name argv[1] */

 printf(“\nNo. of arguments in Command line = %d\n\n”,argc);

 for(i = 2; i < argc; i++)

 fprintf(fp,”%s “, argv[i]); /* write to file argv[1] */

 fclose(fp);

 /* Writing content of the file to screen */

 printf(“Contents of %s file\n\n”, argv[1]);

 fp = fopen(argv[1], “r”);

 for(i = 2; i < argc; i++)

 {

 fscanf(fp,”%s”, word);

 printf(“%s “, word);

 }

 fclose(fp);

 printf(“\n\n”);

 /* Writing the arguments from memory */

 for(i = 0; i < argc; i++)

 printf(“%*s \n”, i*5,argv[i]);

 }

 Output

 C>F12_7 TEXT AAAAAA BBBBBB CCCCCC DDDDDD EEEEEE FFFFFF GGGGG

Programming in ANSI C416

 No. of arguments in Command line = 9

 Contents of TEXT file

 AAAAAA BBBBBB CCCCCC DDDDDD EEEEEE FFFFFF GGGGGG

 C:\C\F12_7.EXE

 TEXT

 AAAAAA

 BBBBBB

 CCCCCC

 DDDDDD

 EEEEEE

 FFFFFF

 GGGGGG

 Fig. 12.8

Just Remember

 ∑

∑

 ∑

 ∑

 ∑

 ∑

 ∑

 ∑

 ∑

 ∑

 12.1 State whether the following statements are or .

 (c) Files are always referred to by name in C programs.

 (d) Using fseek

 (e) Function fseek

 12.2 Fill in the blanks in the following statements.

File Management in C 417

 12.3 Describe the use and limitations of the functions getc and putc.

 (a) getc and getchar

 (b) printf and fprintf

 (c) feof and ferror

 12.8 What are the common uses of rewind and ftell functions?

fseek function?

rewind(fp); and fseek(fp,0L,0);?

 FILE fptr;

 fptr = fopen (“data”, “a+”);

12.12 What does the following statement mean?

 FILE(*p) (void)

12.13 What does the following statement do?

 While ((c = getchar() != EOF)

 putc(c, fl);

 While ((m = getw(fl)) != EOF)

 printf(“%5d”, m);

 for (i = 1; i <= 5; i++)

 {

 fscanf(stdin, “%s”, name);

 fprintf(fp, “%s”, name);

 }

 (a) feof ()

 (b) ferror ()

 and in a program.

12.19 When do we use the following functions?

 (a) free ()

 (b) rewind ()

Programming in ANSI C418

integers.

on the screen.

 If the offset value is a positive integer, then printing skips that many lines. If it is a negative

printed, if anything goes wrong.

include product code, cost and number of items available and are provided through keyboard.

13
DYNAMIC MEMORY

ALLOCATION AND

LINKED LISTS

Key Terms

Dynamic memory allocation I Stack, Heap I Linked list I Size of operators I malloc fuction I calloc

function I realloc function I Null pointer

13.1 INTRODUCTION

Most often we face situations in programming where the data is dynamic in nature. That is, the number

of data items keep changing during execution of the program. For example, consider a program for

processing the list of customers of a corporation. The list grows when names are added and shrinks when

names are deleted. When list grows we need to allocate more memory space to the list to accommodate

additional data items. Such situations can be handled more easily and effectively by using what is

known as dynamic data structures in conjunction with dynamic memory management techniques.

Dynamic memory management techniques permit us to allocate additional memory space or to release

unwanted space at run time, thus, optimizing the use of storage space. This chapter discusses the

concept of linked lists, one of the basic types of dynamic data structures. Before we take up linked lists,

functions would be extensively used in processing linked lists.

13.2 DYNAMIC MEMORY ALLOCATION

be able to do so always. Our initial judgement of size, if it is wrong, may cause failure of the program or

wastage of memory space.

Many languages permit a programmer to specify an array’s size at run time. Such languages have

the ability to calculate and assign, during execution, the memory space required by the variables in

a program. The process of allocating memory at run time is known as dynamic memory allocation.

management functions” that can be used for allocating and freeing memory during program execution.

They are listed in Table 13.1. These functions help us build complex application programs that use the

available memory intelligently.

Programming in ANSI C420

Table 13.1 Memory Allocation Functions

Function Task

malloc

allocated space.

calloc Allocates space for an array of elements, initializes them to zero and then

returns a pointer to the memory.

free Frees previously allocated space.

realloc

Memory Allocation Process

Local variables Stack

Free memory Heap

Global variables

Permanent
Storage area

C program instructions

Fig. 13.1 Storage of a C program

The program instructions and global and static variables are stored in a region known as permanent

storage area and the local variables are stored in another area called stack. The memory space that is

located between these two regions is available for dynamic allocation during execution of the program.

This free memory region is called the heap. The size of the heap keeps changing when program is

executed due to creation and death of variables that are local to functions and blocks. Therefore, it is

memory allocation functions mentioned above return a NULL pointer (when they fail to locate enough

memory requested).

13.3 ALLOCATING A BLOCK OF MEMORY: MALLOC

A block of memory may be allocated using the function malloc. The malloc function reserves a block

void. This means that we can assign it to any

type of pointer. It takes the following form:

ptr = (cast-type *) malloc(byte-size);

ptr is a pointer of type cast-type. The malloc returns a pointer (of cast-type) to an area of memory with

size byte-size.

Dynamic Memory Allocation and Linked Lists 421

Example:

 x = (int *) malloc (100 *sizeof(int));

int

x of type of int.

Similarly, the statement

cptr = (char*) malloc(10);

cptr of type char. This is illustrated as:

10 bytes of space

Address of first byte

cptr

Note that the storage space allocated dynamically has no name and therefore its contents can be

accessed only through a pointer.

We may also use malloc to allocate space for complex data types such as structures. Example:

st_var = (struct store *)malloc(sizeof(struct store));

where, st_var is a pointer of type struct store

Remember, the malloc allocates a block of contiguous bytes. The allocation can fail if the space in

whether the allocation is successful before using the memory pointer. This is illustrated in the program

in Fig.13.2.

Program 13.1
interactively at run time.

The program is given in Fig.13.2. It tests for availability of memory space of required size. If it is available,

The program also illustrates the use of pointer variable for storing and accessing the table values.

 Program

 #include <stdio.h>

 #include <stdlib.h>

 #define NULL 0

 main()

 {

 int *p, *table;

 int size;

 printf(“\nWhat is the size of table?”);

Programming in ANSI C422

 scanf(“%d”,size);

 printf(“\n”)

 /*------------Memory allocation --------------*/

 if((table = (int*)malloc(size *sizeof(int))) == NULL)

 {

 printf(“No space available \n”);

 exit(1);

 }

 printf(“\n Address of the first byte is %u\n”, table);

 /* Reading table values*/

 printf(“\nInput table values\n”);

 for (p=table; p<table + size; p++)

 scanf(“%d”,p);

 /* Printing table values in reverse order*/

 for (p = table + size –1; p >= table; p ––)

 printf(“%d is stored at address %u \n”,*p,p);

 }

 Output

 What is the size of the table? 5

 Address of the first byte is 2262

 Input table values

 11 12 13 14 15

 15 is stored at address 2270

 14 is stored at address 2268

 13 is stored at address 2266

 12 is stored at address 2264

 11 is stored at address 2262

 Fig. 13.2 Memory allocation with malloc

13.4 ALLOCATING MULTIPLE BLOCKS OF MEMORY: CALLOC

calloc is another memory allocation function that is normally used for requesting memory space at run

time for storing derived data types such as arrays and structures. While malloc allocates a single block

of storage space, calloc allocates multiple blocks of storage, each of the same size, and then sets all

bytes to zero. The general form of calloc is:

ptr = (cast-type *) calloc (n, elem-size);

Dynamic Memory Allocation and Linked Lists 423

The above statement allocates contiguous space for n blocks, each of size elem-size bytes. All bytes

enough space, a NULL pointer is returned.

The following segment of a program allocates space for a structure variable:

 struct student

 {

 char name[25];

 float age;

 long int id_num;

 };

 typedef struct student record;

 record *st_ptr;

 int class_size = 30;

 st_ptr=(record *)calloc(class_size, sizeof(record));

record is of type struct student having three members: name, age and id_num. The calloc allocates

allocated successfully before using the st_ptr. This may be done as follows:

 if(st_ptr == NULL)

 {

 printf(“Available memory not sufficient”);

 exit(1);

 }

13.5 RELEASING THE USED SPACE: FREE

is not required. The release of storage space becomes important when the storage is limited.

When we no longer need the data we stored in a block of memory, and we do not intend to use that

block for storing any other information, we may release that block of memory for future use, using the

free function:

free (ptr);

ptr is a pointer to a memory block, which has already been created by malloc or calloc. Use of an

invalid pointer in the call may create problems and cause system crash. We should remember two

things here:

 1. It is not the pointer that is being released but rather what it points to.

 2. To release an array of memory that was allocated by calloc we need only to release the pointer

once. It is an error to attempt to release elements individually.

The use of free function has been illustrated in Program 13.2.

Programming in ANSI C424

13.6 ALTERING THE SIZE OF A BLOCK: REALLOC

space for more elements. It is also possible that the memory allocated is much larger than necessary

and we want to reduce it. In both the cases, we can change the memory size already allocated with

the help of the function realloc. This process is called the reallocation of memory. For example, if the

original allocation is done by the statement

ptr = malloc(size);

then reallocation of space may be done by the statement

ptr = realloc(ptr, newsize);

This function allocates a new memory space of size newsize to the pointer variable ptr and returns

newsize may be larger or smaller than the size.

Remember, the new memory block may or may not begin at the same place as the old one. In case, it

and move the contents of the old block into the new block. The function guarantees that the old data

will remain intact.

If the function is unsuccessful in locating additional space, it returns a NULL pointer and the original

block is freed (lost). This implies that it is necessary to test the success of operation before proceeding

further. This is illustrated in the program of Program 13.2.

Program 13.2
Write a program to store a character string in a block of memory space

created by malloc and then modify the same to store a larger string.

The program is shown in Fig. 13.3. The output illustrates that the original buffer size obtained is

 Program

 #include <stdio.h>

 #include<stdlib.h>

 #define NULL 0

 main()

 {

 char *buffer;

 /* Allocating memory */

 if((buffer = (char *)malloc(10)) == NULL)

 {

 printf(“malloc failed.\n”);

 exit(1);

 }

 printf(“Buffer of size %d created \n”,_msize(buffer));

 strcpy(buffer, “HYDERABAD”);

 printf(“\nBuffer contains: %s \n “, buffer);

 /* Reallocation */

 if((buffer = (char *)realloc(buffer, 15)) == NULL)

Dynamic Memory Allocation and Linked Lists 425

 {

 printf(“Reallocation failed. \n”);

 exit(1);

 }

 printf(“\nBuffer size modified. \n”);

 printf(“\nBuffer still contains: %s \n”,buffer);

 strcpy(buffer, “SECUNDERABAD”);

 printf(“\nBuffer now contains: %s \n”,buffer);

 /* Freeing memory */

 free(buffer);

 }

 Output

 Buffer of size 10 created

 Buffer contains: HYDERABAD

 Buffer size modified

 Buffer still contains: HYDERABAD

 Buffer now contains: SECUNDERABAD

 Fig. 13.3 Reallocation and release of memory space

13.7 CONCEPTS OF LINKED LISTS

We know that a list refers to a set of items organized sequentially. An array is an example of list. In an

array, the sequential organization is provided implicitly by its index. We use the index for accessing and

manipulation of array elements. One major problem with the arrays is that the size of an array must be

applications.

A completely different way to represent a list is to make each item in the list part of a structure that

called a linked list because it is a list whose order is given by links from one item to the next.

item

structure 1 structure 3structure 2

item item
next

Fig. 13.4 A linked list

Each structure of the list is called a node

the other containing the address of the next item (a pointer to the next item) in the list. A linked list is

therefore a collection of structures ordered not by their physical placement in memory (like an array) but

by logical links that are stored as part of the data in the structure itself. The link is in the form of a pointer

to another structure of the same type. Such a structure is represented as follows:

Programming in ANSI C426

 struct node

 {

 int item;

 struct node *next;

 };

below. Remember, the item is an integer here only for simplicity, and could be any complex data type.

self-

refrential structure.

A node may be represented in general form as follows:

 struct tag-name

 {

 type member1;

 type member2;

 struct tag-name *next;

 };

The structure may contain more than one item with different data types. However, one of the items

must be a pointer of the type tag-name.

nextmember Nmember 2member 1

as follows:

 struct link_list

 {

 float age:

 struct link_list *next;

 };

For simplicity, let as assume that the list contains two nodes node1 and node2. They are of type

struct link_list

struct link_list node1, node2;

Dynamic Memory Allocation and Linked Lists 427

node1.age

node2.age

node1.next

node2.next

node1

node2

The next pointer of node1 can be made to point to node2 by the statement

node1.next = &node2;

This statement stores the address of node2 node1.next

between node1 and node2 as shown:

node1.age

node2.age

node1.next

Link

node2.next

node1

node2

XXXX

node2 where the value of the variable node2.age will be stored. Now let us

 node1.age = 35.50;

 node2.age = 49.00;

The result is as follows:

node1.age

node2.age

node1.next

Link
49.00

node2.next

node1

node2

XXXX

35.50

We may continue this process to create a liked list of any number of values.

For example:

node2.next = &node3;

would add another link provided node3 has been declared as a variable of type struct link list.

Programming in ANSI C428

No list goes on forever. Every list must have an end. We must therefore indicate the end of a linked

null that can be stored

in the next

node2.next = 0;

node1.age

node2.age

node1.next

Link
49.00

node2.next
()null pointer

node1

35.50

node2

XXXX

0

The value of the age member of node2 can be accessed using the next member of node1 as follows:

printf(“%f\n”, node1.next–>age);

13.8 ADVANTAGES OF LINKED LISTS

A linked list is dynamic data structure. Therefore, the primary advantage of linked lists over arrays is that

linked lists can grow or shrink in size during the execution of a program. A linked list can be made just

as long as required.

Another advantage is that a linked list does not waste memory space. It uses the memory that is

just needed for the list at any point of time. This is because it is not necessary to specify the number of

nodes to be used in the list.

shown in Fig. 13.5.

The major limitation of linked lists is that the access to any arbitrary item is little cumbersome and

than a linked list. We must also note that a linked list will use more storage than an array with the same

13.9 TYPES OF LINKED LISTS

There are different types of lined lists. The one we discussed so far is known as linear singly linked list.

The other linked lists are:

 ∑

 ∑

 ∑

The doubly linked list uses double set of pointers, one pointing to the next item and other pointing to the

Dynamic Memory Allocation and Linked Lists 429

both the forward pointer and backward pointer in circular form. Figure 13.6 illustrates various kinds of

linked lists.

13.10 POINTERS REVISITED

Th

processing of lists.

We know that variables can be declared as pointers, specifying the type of data item they can point

to. In effect, the pointer will hold the address of the data item and can be used to access its value. In

processing linked lists, we mostly use pointers of type structures.

Item 3

Item 3

Item 3

Item 3

Item 2

Item 2

Item to be deleted

Item 2

Item 2

Item to be inserted

(a) Insertion

(b) Deletion

x

x

Item 1

Item 1

Item1

Item 1

(A record is created holding the new item and its next pointer is set to link it to the
item, which is to follow it in the list. The next pointer of the item which is to precede it
must be modified to point to the new item.)

(The next pointer of the item immediately preceding the one to be deleted is altered
and made to point to the item following the deleted item.)

Fig. 13.5 Insertion into and deletion from a linked list

Programming in ANSI C430

It is most important to remember the distinction between the pointer variable ptr, which contain the

address of a variable, and the referenced variable *ptr, which denotes the value of variable to which

ptr’s value points. The following examples illustrate this distinction. In these illustrations, we assume

that the pointers p and q and the variables x and y are declared to be of same type.

(a) Initialization

100

200

p

p = & ;x

q = &y;

q

points to

points to

x

y

The pointer p contains the address of x and q contains the address of y.

 *p =100 and *q = 200 and p< >q

(b) Assignment p = q

The assignment p = q assigns the address of the variable y to the pointer variable p and therefore p

now points to the variable y.

0

(a) Linear list

(b) Circular list

(c) Two-way linked list

(d) Two-way circular list

A B C

A

A

A0

B

B

B

C

C

C 0

Fig. 13.6 Different types of linked lists

Dynamic Memory Allocation and Linked Lists 431

100

200

p

q

x

y

p = q;

Both the pointer variables point to the same variable.

*p = *q = 200 but x <> y

(c) Assignment *p = *q

This assignment statement puts the value of the variable pointed to by q in the location of the variable

pointed to by p.

200

200

p

q

points to

points to

x

y

*p = *q;

The pointer p still points to the same variable x but the old value of x

pointed to by q).

x = y = 200 but p <> q

(d) NULL pointers

That is the statements

Æ

Æ

make the pointers p and q point to nothing. They can be later used to point any values.

We know that a pointer must be initialized by assigning a memory address before using it. There are

two ways of assigning memory address to a pointer.

 1. Assigning an existing variable address (static assignment)

ptr = &count;

 2. Using a memory allocation function (dynamic assignment)

 ptr = (int*) malloc(sizeof(int));

13.11 CREATING A LINKED LIST

We can treat a linked list as an abstract data type and perform the following basic operations:

 2. Traversing the list.

Programming in ANSI C432

 5. Looking up an item for editing or printing.

 6. Inserting an item.

 7. Deleting an item.

node1 and

node2. We also used the address operator & and member operators . and –> for creating and accessing

in the list so that we can insert or delete items as and when necessary. This can be achieved by using

pointers, which refer to them. (For example, we must avoid using references like node1.age and node1.

next –> age.)

Anonymous locations are created using pointers and dynamic memory allocation functions such as

malloc. We use a pointer head

 struct linked_list

 {

 int number;

 struct linked_list *next;

 };

 typedef struct linked_list node;

 node *head;

 head = (node *) malloc(sizeof(node));

The struct declaration merely describes the format of the nodes and does not allocate storage.

Storage space for a node is created only when the function malloc is called in the statement

head = (node *) malloc(sizeof(node));

the pointer variable head. This pointer indicates the beginning of the linked list.

head node

number next

 head –> number = 10;

 head –> next = NULL;

head

10 0

node

number next

The second node can be added as follows:

 head –> next = (node *)malloc(sizeof(node));

 head –> next –>number = 20;

 head–>next–>next = NULL;

Dynamic Memory Allocation and Linked Lists 433

Although this process can be continued to create any number of nodes, it becomes cumbersome and

clumsy if nodes are more than two. The above process may be easily implemented using both recursion

replacement statement such as:

 head = head –> next;

The Program 13.3 shows creation of a complete linked list and printing of its contents using recursion.

Program 13.3
Write a program to create a linear linked list interactively and print out the list

and the total number of items in the list.

the statement

head = (node *)malloc(sizeof(node));

which returns a pointer to a structure of type node

then created by the function create. The function requests for the number to be placed in the current

node that has been created. If the value assigned to the current node is –999, then null is assigned to

the pointer variable next and the list ends. Otherwise, memory space is allocated to the next node using

again the malloc function and the next value is placed into it. Not that the function create calls itself

recursively and the process will continue until we enter the number –999.

The items stored in the linked list are printed using the function print, which accept a pointer to

the current node as an argument. It is a recursive function and stops when it receives a NULL pointer.

 2. While there are valid nodes left to print

 (b) advance to next node.

Similarly, the function count counts the number of items in the list recursively and return the total

number of items to the main function. Note that the counting does not include the item –999 (contained

in the dummy node).

 Program

 #include <stdio.h>

 #include <stdlib.h>

 #define NULL 0

 struct linked_list

 {

 int number;

 struct linked_list *next;

 };

 typedef struct linked_list node; /* node type defined */

 main()

Programming in ANSI C434

 {

 node *head;

 void create(node *p);

 int count(node *p);

 void print(node *p);

 head = (node *)malloc(sizeof(node));

 create(head);

 printf(“\n”);

 printf(head);

 printf(“\n”);

 printf(“\nNumber of items = %d \n”, count(head));

 }

 void create(node *list)

 {

 printf(“Input a number\n”);

 printf(“(type –999 at end): “);

 scanf(“%d”, &list –> number); /* create current node */

 if(list–>number == –999)

 {

 list–>next = NULL;

 }

 else /*create next node */

 {

 list–>next = (node *)malloc(sizeof(node));

 create(list–>next); */ Recursion occurs */

 }

 return;

 }

 void print(node *list)

 {

 if(list–>next != NULL)

 {

 printf(“%d––>”,list –>number); /* print current item */

 if(list–>next–>next == NULL)

 printf(“%d”, list–>next–>number);

 print(list–>next); /* move to next item */

 }

 return;

Dynamic Memory Allocation and Linked Lists 435

 }

 int count(node *list)

 {

 if(list–>next == NULL)

 return (0);

 else

 return(1+ count(list–>next));

 }

 Output

 Input a number

 (type –999 to end); 60

 Input a number

 (type –999 to end); 20

 Input a number

 (type –999 to end); 10

 Input a number

 (type –999 to end); 40

 Input a number

 (type –999 to end); 30

 Input a number

 (type –999 to end); 50

 Input a number

 (type –999 to end); -999

 60 – –>20 – –>10 – –>40 – –>30 – –>50 – –> –999

 Number of items = 6

 Fig. 13.7 Creating a linear linked list

13.12 INSERTING AN ITEM

One of the advantages of linked lists is the comparative case with which new nodes can be inserted. It

requires merely resetting of two pointers (rather than having to move around a list of data as would be

the case with arrays).

Inserting a new item, say X, into the list has three situations:

 1. Insertion at the front of the list.

 2. Insertion in the middle of the list.

 3. Insertion at the end of the list.

Programming in ANSI C436

The process of insertion precedes a search for the place of insertion. The search involves in locating

a node after which the new item is to be inserted.

A general algorithm for insertion is as follows:

Begin

 if the list is empty or

 the new node comes before the head node then,

 insert the new node as the head node,

 else

 if the new node comes after the last node, then,

 insert the new node as the end node,

 else

 insert the new node in the body of the list.

End

Algorithm for placing the new item at the beginning of a linked list:

 1. Obtain space for new node.

 3. Set the next

 1. Set space for new node X.

 3. Set the next

next

Algorithm for inserting an item at the end of the list is similar to the one for inserting in the middle,

except the next

exists).

Program 13.4
Write a function to insert a given item before key

node.

The function insert

the insertion happens to be at the beginning, then memory space is created for the new node, the value

of new item is assigned to it and the pointer head is assigned to the next member. The pointer new,

which indicates the beginning of the new node is assigned to head. Note the following statements:

 new–>number = x;

 new–>next = head;

 head = new;

 node *insert(node *head)

 {

 node *find(node *p, int a);

 node *new; /* pointer to new node */

Dynamic Memory Allocation and Linked Lists 437

 node *n1; /* pointer to node preceding key node */

 int key;

 int x; /* new item (number) to be inserted */

 printf(“Value of new item?”);

 scanf(“%d”, &x);

 printf(“Value of key item ? (type –999 if last) “);

 scanf(“%d”, &key);

 if(head–>number == key) /* new node is first */

 {

 new = (node *)malloc(size of(node));

 new–>number = x;

 new–>next = head;

 head = new;

 }

 else /* find key node and insert new node */

 { /* before the key node */

 n1 = find(head, key); /* find key node */

 if(n1 == NULL)

 printf(“\n key is not found \n”);

 else /* insert new node */

 {

 new = (node *)malloc(sizeof(node));

 new–>number = x;

 new–>next = n1–>next;

 n1–>next = new;

 }

 }

 return(head);

 }

 node *find(node *lists, int key)

 {

 if(list–>next–>number == key) /* key found */

 return(list);

 else

 if(list–>next–>next == NULL) /* end */

 return(NULL);

 else

 find(list–>next, key);

 }

 Fig. 13.8 A function for inserting an item into a linked list

Programming in ANSI C438

However, if the new item is to be inserted after an existing node, then we use the function

recursively to locate the ‘key node’. The new item is inserted before the key node using the algorithm

discussed above. This is illustrated as:

Before insertion

 new = (node *)malloc(sizeof(node));

 new–>number = x;

After insertion

 new–>next = n1–>next;

 n1–>next = new;

13.13 DELETING AN ITEM

Deleting a node from the list is even easier than insertion, as only one pointer value needs to be

changed. Here again we have three situations.

 2. Deleting the last item.

 3. Deleting between two nodes in the middle of the list.

cases, the pointer of the item immediately preceding the one to be deleted is altered to point to the item

following the deleted item. The general algorithm for deletion is as follows:

Dynamic Memory Allocation and Linked Lists 439

Begin

 if the list is empty, then,

 node cannot be deleted

 else

 if then,

 make the head to point to the second node,

 else

 delete the node from the body of the list.

End

process of deletion also involves search for the item to be deleted.

Program 13.5 W

pointer variable p

node is assigned to head

 function to locate the position of

‘key node’ containing the item to be deleted. The pointers are interchanged with the help of a temporary

pointer variable making the pointer in the preceding node to point to the node following the key node.

position of the key node.

The execution of the following code deletes the key node.

 p = n1–>next–>next;

 free (n1–>next);

 n1–>next = p;

Programming in ANSI C440

 node *delete(node *head)

 {

 node *find(node *p, int a);

 int key; /* item to be deleted */

 node *n1; /* pointer to node preceding key node */

 node *p; /* temporary pointer */

 printf(“\n What is the item (number) to be deleted?”);

 scanf(“%d”, &key);

 if(head–>number == key) /* first node to be deleted) */

 {

 p = head–>next; /* pointer to 2nd node in list */

 free(head); /* release space of key node */

 head = p; /* make head to point to 1st node */

 }

 else

 {

 n1 = find(head, key);

 if(n1 == NULL)

 printf(“\n key not found \n”);

 else /* delete key node */

 {

 p = n1–>next–>next; /* pointer to the node

 following the keynode */

 free(n1–>next); /* free key node */

 n1–>next = p; /* establish link */

 }

 }

 return(head);

 }

 /* USE FUNCTION find() HERE */

 Fig. 13.9 A function for deleting an item from linked list

13.14 APPLICATION OF LINKED LISTS

Linked list concepts are useful to model many different abstract data types such as queues, stacks and

trees.

If we restrict the process of insertion to one end of the list and deletions to the other end, then we

have a model of a queue. That is, we can insert an item at the rear and remove an item at the front (see

Dynamic Memory Allocation and Linked Lists 441

If we restrict insertions and deletions to occur only at the beginning of list, then we model another

data structure known as stack. Stacks are also referred to as push-down lists. An example of a stack

tree

linked list. Trees are frequently encountered in everyday life. One example is the organizational chart of

a large company. Another example is the chart of sports tournaments.

Car5
IN

Car4

File 4

File 2

File 3

File 1

(b) Stack (Executive tray)

Car3 Car2 Car1
OUT

Front

IN OUT

Rear

(a) Queue (Repair shop)

Fig. 13.10 Application of linked lists

Just Remember

 ∑ Use the sizeof operator to determine the size of a linked list.

 ∑ When using memory allocation functions malloc and calloc, test for a NULL pointer return value.

Print appropriate message if the memory allocation fails.

 ∑ Never call memory allocation functions with a zero size.

 ∑ Release the dynamically allocated memory when it is no longer required to avoid any possible

 ∑ Using free function to release the memory not allocated dynamically with malloc or calloc is an

error.

 ∑ Use of a invalid pointer with free may cause problems and, sometimes, system crash.

 ∑ Using a pointer after its memory has been released is an error.

 ∑ It is an error to assign the return value from malloc or calloc to anything other than a pointer.

 ∑ It is a logic error to set a pointer to NULL before the node has been released. The node is

irretrievably lost.

 ∑

 ∑ It is an error to release individually the elements of an array created with calloc.

 ∑

Programming in ANSI C442

Case Studies

1. Insertion in a Sorted List

The task of inserting a value into the current location in a sorted linked list involves two operations:

 1. Finding the node before which the new node has to be inserted. We call this node as

‘Key node’.

manipulating pointers appropriately.

In order to illustrate the process of insertion, we use a sorted linked list created by the create function

discussed in Program 13.3. Figure 13.11 shows a complete program that creates a list (using sorted

input data) and then inserts a given value into the correct place using function insert.

 Program

 #include <stdio.h>

 #include <stdio.h>

 #define NULL 0

 struct linked_list

 {

 int number;

 struct linked-list *next;

 };

 typedef struct linked_lit node;

 main()

 {

 int n;

 node *head;

 void create(node *p);

 node *insert(node *p, int n);

 void print(node *p);

 head = (node *)malloc(sizeof(node));

 create(head);

 printf(“\n”);

 printf(“Original list: “);

 print(head);

 printf(“\n\n”);

 printf(“Input number to be inserted: “);

 scanf(“%d”, &n);

 head = inert(head,n);

 printf(“\n”);

 printf(“New list: “);

Dynamic Memory Allocation and Linked Lists 443

 print(head);

 }

 void create(node *list)

 {

 printf(“Input a number \n”);

 printf(“(type –999 at end): “);

 scanf(“%d”, &list–>number);

 if(list–>number == –999)

 {

 list–>next = NULL;

 }

 else /* create next node */

 {

 list–>next = (node *)malloc(sizeof(node));

 create(list–>next);

 }

 return:

 }

 void print(node *list)

 {

 if(list–>next != NULL)

 {

 printf(“%d ––>”, list–>number);

 if(list –>next–>next = = NULL)

 printf(“%d”, list–>next–>number);

 print(list–>next);

 }

 return:

 }

 node *insert(node *head, int x)

 {

 node *p1, *p2, *p;

 p1 = NULL;

 p2 = head; /* p2 points to first node */

 for(; p2–>number < x; p2 = p2–>next)

 {

 p1 = p2;

 if(p2–>next–>next == NULL)

Programming in ANSI C444

 {

 p2 = p2–>next; /* insertion at end */

 break;

 }

 }

 /*key node found and insert new node */

 p = (node)malloc(sizeof(node)); / space for new node */

 p–>number = x; /* place value in the new node */

 p–>next = p2; /*link new node to key node */

 if (p1 == NULL)

 head = p; /* new node becomes the first node */

 else

 p1–>next = p; /* new node inserted in middle */

 return (head);

 }

 Output

 Input a number

 (type –999 at end); 10

 Input a number

 (type –999 at end); 20

 Input a number

 (type –999 at end); 30

 Input a number

 (type –999 at end); 40

 Input a number

 (type –999 at end); -999

 Original list: 10 – –>20– –>30– –>40– –>–999

 Input number to be inserted: 25

 New list: 10– –>20– –>25– –>30– –>40– –>–999

 Fig. 13.11 Inserting a number in a sorted linked list

Dynamic Memory Allocation and Linked Lists 445

The function takes two arguments, one the value to be inserted and the other a pointer to the linked

list. The function uses two pointers, p1 and p2 to search the list. Both the pointers are moved down the

list with p1 trailing p2 by one node while the value p2 points to is compared with the value to be inserted.

The ‘key node’ is found when the number p2 points to is greater (or equal) to the number to be inserted.

Once the key node is found, a new node containing the number is created and inserted between the

nodes pointed to by p1 and p2

p1

p1

head

head

p2

p2

10

10

20

20

x = 25 (value to be inserted)

key node

key node

At the start of the search

When key node is found

30

30

40

40

Programming in ANSI C446

2. Building a Sorted List

The program in Fig. 13.11 can be used to create a sorted list. This is possible by creating ‘one item’ list

using the create function and then inserting the remaining items one after another using insert function.

A new program that would build a sorted list from a given list of numbers is shown in Fig. 13.12.

The main

insert_sort repeatedly to build the entire sorted list. It uses the same sorting algorithm discussed above

but does not use any dummy node. Note that the last item points to NULL.

 Program

 #include <stdio.h>

 #include <stdlib.h>

 #define NULL 0

 struct linked_list

 {

 int number;

 struct linked_list *next;

 };

 typedef struct linked_list node;

 main ()

 {

 int n;

 node *head = NULL;

 void print(node *p);

 node *insert_Sort(node *p, int n);

 printf(“Input the list of numbers.\n”);

 printf(“At end, type –999.\n”);

 scanf(“%d”,&n);

 while(n != –999)

 {

 if(head == NULL) /* create ‘base’ node */

 {

 head = (node *)malloc(sizeof(node));

 head –>number = n;

 head–>next = NULL;

 }

 else /* insert next item */

Dynamic Memory Allocation and Linked Lists 447

 {

 head = insert_sort(head,n);

 }

 scanf(“%d”, &n);

 }

 printf(“\n”);

 print(head);

 print(“\n”);

 }

 node *insert_sort(node *list, int x)

 {

 node *p1, *p2, *p;

 p1 = NULL;

 p2 = list; /* p2 points to first node */

 for(; p2–>number < x ; p2 = p2–>next)

 {

 p1 = p2;

 if(p2–>next == NULL)

 {

 p2 = p2–>next; /* p2 set to NULL */

 break; /* insert new node at end */

 }

 }

 /* key node found */

 p = (node *)malloc(sizeof(node)); /* space for new node */

 p–>number = x; /* place value in the new node */

 p–>next = p2; /* link new node to key node */

 if (p1 == NULL)

 list = p; /* new node becomes the first node */

 else

 p1–>next = p; /* new node inserted after 1st node */

 return (list);

 }

 void print(node *list)

 {

 if (list == NULL)

 printf(“NULL”);

 else

 {

Programming in ANSI C448

 printf(“%d––>”,list–>number);

 print(list–>next);

 }

 return;

 }

 Output

 Input the list of number.

 At end, type –999.

 80 70 50 40 60 –999

 40– –>50– –>60– –>70– –>80 – –>NULL

 Input the list of number.

 At end, type –999.

 40 70 50 60 80 –999

 40– –>50– –>60– –>70– –>80– –>NULL

 Fig. 13.12 Creation of sorted list from a given list of numbers

Review Questions

 13.1 State whether the following statements are true or false

 (a) Dynamically allocated memory can only be accessed using pointers.

 (b) calloc is used to change the memory allocation previously allocated with malloc.

 (c) Only one call to free is necessary to release an entire array allocated with calloc.

 (d) Memory should be freed when it is no longer required.

 (e) To ensure that it is released, allocated memory should be freed before the program ends.

 13.2 Fill in the blanks in the following statements

 (a) Function ______________ is used to dynamically allocate memory to arrays.

 (b) A_______________ is an ordered collection of data in which each element contains

the location of the next element.

called _________________ structures.

 (e) Stacks are referred to as _______________.

 13.3 What is a linked list? How is it represented?

 13.5 What is the principal difference between the functions malloc and calloc

 13.6 Find errors, if any, in the following memory management statements:

 a. *ptr = (int *)malloc(m, sizeof(int));

 b. table = (float *)calloc(100);

 c. node = free(ptr);

Dynamic Memory Allocation and Linked Lists 449

 13.7 Why a linked list is called a dynamic data structure? What are the advantages of using

linked lists over arrays?

 13.8 Describe different types of linked lists.

 struct

 {

 char name[30]

 struct *next;

 };

 typedef struct node;

list.h

 typedef struct

 {

 char name[15];

 int age;

 float weight;

 }DATA;

 struct linked_list

 {

 DATA person;

 Struct linked_list *next;

 };

 typedef struct linked_list NODE;

 typedef NODE *NDPTR;

 13.11 What does the following code achieve?

 int * p ;

 p = malloc (sizeof (int)) ;

 13.12 What does the following code do?

 float *p;

 p = calloc (10,sizeof(float)) ;

 13.13 What is the output of the following code?

 int i, *ip ;

 ip = calloc (4, sizeof(int));

 for (i = 0 ; i < 4 ; i++)

 * ip++ = i * i;

 for (i = 0 ; i < 4 ; i++)

 printf(“%d\n”, *—ip);

 int *p;

 p = malloc (sizeof (int));

 *p = 100 ;

 p = malloc (sizeof (int));

 *p = 111;

 printf(“%d”, *p);

Programming in ANSI C450

13.15 What is the output of the following segment?

 struct node

 {

 int m ;

 struct node *next;

 } x, y, z, *p;

 x.m = 10 ;

 y.m = 20 ;

 z.m = 30 ;

 x.next = &y;

 y.next = &z;

 z.next = NULL;

 p = x.next;

 while (p != NULL)

 {

 printf(“%d\n”, p -> m);

 p = p -> next;

 }

Programming Exercises

 13.1 In Program 13.3, we have used print() in recursive mode. Rewrite this function using iterative

technique in for loop.

 13.2 Write a menu driven program to create a linked list of a class of students and perform the following

operations:

 a. Write out the contents of the list.

numbers. The program should be menu driven and include features for add ing a new customer

and deleting an existing customer.

 13.5 Modify the above program so that the list is always maintained in the alphabetical order of

customer names.

 13.6 Develop a program to combine two sorted lists to produce a third sorted lists which contains one

occurrence of each of the elements in the original lists.

 13.7 Write a program to create a circular linked list so that the input order of data item is maintained.

Add function to carry out the following operations on circular linked list.

 b. Write out contents

 c. Locate and write the contents of a given node

Dynamic Memory Allocation and Linked Lists 451

node.

 13.9 Write a function that would traverse a linear singly linked list in reverse and write out the contents

in reverse order.

pointer to the last node. NULL should be returned if the list is empty.

 13.12 Write a function that counts and returns the total number of nodes in a linked list.

 13.15 Write functions to implement the following tasks for a doubly linked list.

 (a) To insert a node.

 (b) To delete a node.

Key Terms

Preprocessor I Macro substitution I Conditional Compilation I Stringizing Operator I Macro call

14.1 INTRODUCTION

C is a unique language in many respects. We have already seen features such as structures and

pointers. Yet another unique feature of the C language is the preprocessor. The C preprocessor provides

several tools that are unavailable in other high-level languages. The programmer can use these tools to

The preprocessor, as its name implies, is a program that processes the source code before it passes

through the compiler. It operates under the control of what is known as preprocessor command lines

or directives. Preprocessor directives are placed in the source program before the main line. Before

the source code passes through the compiler, it is examined by the preprocessor for any preprocessor

directives. If there are any, appropriate actions (as per the directives) are taken and then the source

program is handed over to the compiler.

Preprocessor directives follow special syntax rules that are different from the normal C syntax. They

all begin with the symbol # in column one and do not require a semicolon at the end. We have already

used the directives and to a limited extent. A set of commonly used preprocessor

directives and their functions is given in Table 14.1.

 Preprocessor Directives

Directive Function

Test a compile-time condition

14 THE PREPROCESSOR

The Preprocessor 453

These directives can be divided into three categories:

 1. Macro substitution directives.

 2. File inclusion directives.

 3. Compiler control directives.

14.2 MACRO SUBSTITUTION

composed of one or more tokens. The preprocessor accomplishes this task under the direction of

 statement. This statement, usually known as a (or simply a macro) takes the

following general form:

If this statement is included in the program at the beginning, then the preprocessor replaces every

occurrence of the in the source code by the string. The keyword is written just as

and a string, with at least one blank

string may be any

text, while the must be a valid C name.

There are different forms of macro substitution. The most common forms are:

 1. Simple macro substitution.

 2. Argumented macro substitution.

 3. Nested macro substitution.

are:

 COUNT 100

#define M 5

total = M * value;

printf(“M = %d\n”, M);

These two lines would be changed during preprocessing as follows:

total = 5 * value;

printf(“M = %d\n”, 5);

Notice that the string is left unchanged.

Programming in ANSI C454

Whenever we use expressions for replacement, care should be taken to prevent an unexpected

order of evaluation. Consider the evaluation of the equation

ratio = D/A;

 D 45 – 22

 A 78 + 32

The result of the preprocessor’s substitution for D and A is:

ratio = 45–22/78+32;

This is certainly different from the expected expression

(45 – 22)/(78+32)

Correct results can be obtained by using parentheses around the strings as:

 D (45 – 22)

 A (78 + 32)

x > y)

 AND

to build a statement as follows:

The preprocessor would translate this line to

if(x>y) printf(“Very Good.\n”);

Some tokens of C syntax are confusing or are error-prone. For example, a common programming

mistake is to use the token = in place of the token == in logical expressions. Similar is the case with the

token &&.

 AND &&

 OR | |

 START main() {

 MOD %

The Preprocessor 455

An example of the use of syntactic replacement is:

 START

 … …..

 … …..

 if(total EQUALS 240 AND average EQUALS 60)

 INCREMENT count;

 … …..

 … ….

 END

the form:

Notice that there is no space between the macro

f2, … … .,fn are the formal macro arguments that are analogous to the formal arguments in a function

There is a basic difference between the simple replacement discussed above and the replacement

of macros with arguments. Subsequent occurrence of a macro with arguments is known as a macro call

(similar to a function call). When a macro is called, the preprocessor substitutes the string, replacing the

A simple example of a macro with arguments is

If the following statement appears later in the program

volume = CUBE(side);

Then the preprocessor would expand this statement to:

volume = (side * side * side);

Consider the following statement:

volume = CUBE(a+b);

This would expand to:

volume = (a+b * a+b * a+b);

which would obviously not produce the correct results. This is because the preprocessor performs a

blind test substitution of the argument a+b in place of x. This shortcoming can be corrected by using

parentheses for each occurrence of a formal argument in the string.

This would result in correct expansion of CUBE(a+b) as:

volume = ((a+b) * (a+b) * (a+b));

Remember to use parentheses for each occurrence of a formal argument, as well as the whole string.

 MAX(a,b) (((a) > (b)) ? (a) : (b))

 MIN(a,b) (((a) < (b)) ? (a) : (b))

Programming in ANSI C456

 ABS(x) (((x) > 0) ? (x) : (–(x)))

 STRGT(s1,s2) (strcmp((s1,) (s2)) > 0)

can be called-in by

PRINT(price x quantity, f);

The preprocessor will expand this as

printf(“price x quantity = %f\n”, price x quantity);

Note that the actual parameters are substituted for formal parameters in a macro call, although they

 M 5

 N M+1

The preprocessor expands each macro, until no more macros appear in the text. For

Since SQUARE (x) is still a macro, it is further expanded into

.

 MAX(M,N) (((M) > (N)) ? (M) : (N))

of the three values x,y, and z:

MAX (x, MAX(y,z))

The Preprocessor 457

14.3 FILE INCLUSION

where

preprocessor inserts the entire contents of into the source code of the program. When the

directory and then in the standard directories.

Alternatively this directive can take the form

cannot include itself.

 SYNTAX.C

 STAT.C contains statistical functions.

 TEST.C contains test functions.

program as:

 #include <stdio.h>

 #include “SYNTAX.C”

 #include “STAT.C”

 #include “TEST.C”

 #define M 100

 main ()

 {

 }

14.4 COMPILER CONTROL DIRECTIVES

While developing large programs, you may face one or more of the following situations:

 2. Suppose a customer has two different types of computers and you are required to write a program

that will run on both the systems. You want to use the same program, although certain lines of

code must be different for each system.

Programming in ANSI C458

 3. You are developing a program (say, for sales analysis) for selling in the open market. Some

single program that would satisfy both types of customers.

 4. Suppose you are in the process of testing your program, which is rather a large one. You would

like to have print calls inserted in certain places to display intermediate results and messages

when you decide so.

One solution to these problems is to develop different programs to suit the needs of different situations.

Another method is to develop a single, comprehensive program that includes all optional codes and then

directs the compiler to skip over certain parts of source code when they are not required. Fortunately,

the C preprocessor offers a feature known as conditional compilation

or off a particular line or group of lines in a program.

achieved as follows:

 … …

DEFINE.H TEST macro. The directive.

TEST , then all the lines between the

 and the corresponding

directive

 condition becomes false, therefore

the directive TEST is ignored. Remember, you cannot simply write

because if TEST

Similar is the case when we want the macro TEST

 … … …

 … …

 … …

 This ensures that even if TEST

cannot simply say

The Preprocessor 459

The main concern here is to make the program portable. This can be achieved as follows:

 main()

 {

 #ifdef IBM_PC

 {

 code for IBM_PC

 }

 #else

 {

 code for HP machine

 }

 #endif

 }

If we want the program to run on IBM PC, we include the directive

 IBM_PC

must be taken to put the # character at column one.

The compiler complies the code for IBM PC if IBM-PC

it is not.

This is similar to the above situation and therefore the control directives take the following form:

 #ifdef ABC

 group-A lines

 #else

 group-B lines

 #endif

Group-A lines are included if the customer ABC

Programming in ANSI C460

Debugging and testing are done to detect errors in the program. While the Compiler can detect syntactic

and semantic errors, it cannot detect a faulty algorithm where the program executes, but produces

wrong results.

The process of error detection and isolation begins with the testing of the program with a known set

of test data. The program is divided down and statements are placed in different parts to see

intermediate results. Such statements are called debugging statements and are not required once the

errors are isolated and corrected. We can either delete all of them or, alternately, make them inactive

using control directives as:

 … …

 … …

 #ifdef TEST

 {

 printf(“Array elements\n”);

 for (i = 0; i< m; i++)

 printf(“x[%d] = %d\n”, i, x[i]);

 }

 #endif

 … ..

 … ..

 #ifdef TEST

 printf(….);

 #endif

 … …

The statements between the directives and are included only if the macro TEST is

TEST. This makes the conditions

false and therefore all the debugging statements are left out.

The C preprocessor also supports a more general form of test condition - directive. This takes the

following form:

 #if constant expression

 {

 statement-1;

 statement-2;

 … …

 … …

 }

 #endif

The constant-expression may be any logical expression such as:

If the result of the constant-expression is nonzero (true), then all the statements between the and

TEST, LEVEL, etc. may be

The Preprocessor 461

14.5 ANSI ADDITIONS

ANSI committee has added some more preprocessor directives to the existing list given in Table 14.1.

They are:

 Provides alternative test facility

 #pragma

 Stops compilation when an error occurs

The ANSI standard also includes two new preprocessor operations:

 # Stringizing operator

 ## Token-pasting operator

form of use of is:

 expression 1

 statement sequence 1

 expression 2

 statement sequence 2

expression N

 statement sequence N

For example:

 #endif

The #pragma is an implementation oriented directive that allows us to specify various instructions to be

given to the compiler. It takes the following form:

#pragma name

where, name is the name of the pragma we want. For example, under Microsoft C,

#pragma loop_opt(on)

causes loop optimization to be performed. It is ignored, if the compiler does not recognize it.

Programming in ANSI C462

The directive is used to produce diagnostic messages during debugging. The general form is

When the directive is encountered, it displays the error message and terminates processing.

 #endif

Note that we have used a special processor operator along with . is a new

addition and takes a name surrounded by parentheses. If a compiler does not support this, we can

replace it as follows:

ANSI C provides an operator # called stringizing operator

the example below:

 #define sum(xy) printf(#xy “ = %f\n”, xy)

 main()

 {

 … …

 … …

 sum(a+b);

 … …

 }

The preprocessor will convert the line

 sum(a+b);

into

 printf(“a+b” “=%f\n”, a+b);

which is equivalent to

 printf(“a+b =%f\n”, a+b);

Note that the ANSI standard also stipulates that adjacent strings will be concatenated.

The token pasting operator ##

 #define combine(s1,s2) s1 ## s2

 main()

 {

The Preprocessor 463

 printf(“%f”, combine(total, sales));

 }

The preprocessor transforms the statement

 printf(“%f”, combine(total, sales));

into the statement

 printf(“%f”, totalsales);

 #define print(i) printf(“a” #i “=%f”, a##i)

This macro will convert the statement

 print(5);

into the statement

 printf(“a5 = %f”, a5)

 14.2 What is a macro and how is it different from a C variable name?

 14.3 What precautions one should take when using macros with argument?

 14.5 When does a programmer use directive?

 14.8 Distinguish between and directives.

 14.9 Comment on the following code fragment:

 #if 0

 {

 line-1;

 line-2;

 … …

 … …

 line-n;

 }

 #endif

 (c) #ifdef(FLAG)

 #undef FLAG

 #endif

Programming in ANSI C464

 (d) #if n == 1 update(item)

 #else print-out(item)

 #endif

 14.11 State whether the following statements are true or false.

 (a) The keyword

 (b) Like other statements, a processor directive must end with a semicolon.

 (c) All preprocessor directives begin with #.

 14.12 Fill in the blanks in the following statements.

 (a) The __________________ directive discords a macro.

 (b) The operator _______________ is used to concatenate two arguments.

 (c) The operator _______________ converts its operand.

 (d) The ______________ directive causes an implementation-oriented action.

 14.14 In

in double quotation marks. Why?

Give an example.

 14.2 Write a nested macro that gives the minimum of three values.

this macro to compute the volume for spheres of radius 5, 10 and 15 metres.

Write a program using this macro to print out the elements of an array.

in an array.

to illustrate the use of these symbolic constants.

constants.

 14.8 Write a program to illustrate the use of stringizing opera tor.

Key Terms

Program design I Syntax error I Run time error I Logical error I Latent error I Backtrack

15.1 INTRODUCTION

We have discussed so far various features of C language and are ready to write and execute programs

of modest complexity. However, before attempting to develop complex programs, it is worthwhile to

The program development process includes three important stages, namely, program design,

programs. In this chapter we shall discuss some of the techniques used for program design, coding and

testing.

15.2 PROGRAM DESIGN

Program design is the foundation for a good program and is therefore an important part of the program

development cycle. Before coding a program, the program should be well conceived and all aspects of

the program design should be considered in detail.

Program design is basically concerned with the development of a strategy to be used in writing the

program, in order to achieve the solution of a problem. This includes mapping out a solution procedure

and the form the program would take. The program design involves the following four stages:

 1. Problem analysis.

 2. Outlining the program structure.

 3. Algorithm development.

 4. Selection of control structures.

Problem Analysis

Before we think of a solution procedure to the problem, we must fully understand the nature of the

15 DEVELOPING A C PROGRAM:

SOME GUIDELINES

Programming in ANSI C466

at this stage;

What kind of data will go in?;

What kind of outputs are needed?; and

What are the constraints and conditions under which the program has to operate?

Outlining the Program Structure

Once we have decided what we want and what we have, then the next step is to decide how to do it.

C as a structured language lends itself to a top-down

solution procedure into tasks that form a hierarchical structure, as shown in Fig. 15.1. The essence of

then to cut the tasks into smaller subtasks, and so on, until they are small enough to be grasped mentally

and to be coded easily. These tasks and subtasks can form the basis of functions in the program.

Problem

Task 1 Task 3Task 2

T11 T21 T31T12 T22 T32

Fig. 15.1 Hierarchical structure

An important feature of this approach is that at each level, the details of the design of lower levels are

reached. Thus the design of functions proceeds from top to bottom, introducing progressively more and

This approach will produce a readable and modular code that can be easily understood and maintained.

Algorithm Development

After we have decided a solution procedure and an overall outline of the program, the next step is to

algorithm for each function. The most

common method of describing an algorithm is through the use of . The other method is to write

what is known as pseudocode

describe the solution steps in a logical order. Either method involves concepts of logic and creativity.

attention to this step. A problem might have many different approaches to its solution. For example,

Developing a C Program: Some Guidelines 467

the area under a curve. We must consider all possible approaches and select the one, which is simple

to follow, takes less execution time, and produces results with the required accuracy.

Control Structures

of execution. In such situations, indiscriminate use of control statements such as goto may lead to

unreadable and uncomprehensible programs. It has been demonstrated that any algorithm can be

structured, using the three basic control structure, namely, sequence structure, selection structure, and

looping structure.

Sequence structure denotes the execution of statements sequentially one after another. Selection

structure involves a decision, based on a condition and may have two or more branches, which usually

join again at a later point. ifelse and switch statements in C can be used to implement a selection

structure. Looping structure is used when a set of instructions is evaluated repeatedly. This structure can

be implemented using do, while, or for statements.

 2. Testing is simple.

 3. Maintenance is easy.

 4. Good documentation is possible.

 5. Cost estimates can be made more accurately.

 6. Progress of coding may be controlled more precisely.

15.3 PROGRAM CODING

The algorithm developed in the previous section must be translated into a set of instructions that a

computer can understand. The major emphasis in coding should be simplicity and clarity. A program

written by one may have to be read by others later. Therefore, it should be readable and simple to

understand. Complex logic and tricky coding should be avoided. The elements of coding style include:

 ∑ Internal documentation.

 ∑ Construction of statements.

 ∑ Generality of the program.

 ∑ Input/output formats.

Internal Documentation

part of the program. These are known as internal documentation.

Two important aspects of internal documentation are, selection of meaningful variable names and the

use of comments. Selection of meaningful names is crucial for understanding the program. For example,

area = breadth * length

is more meaningful than

a = b * l;

Programming in ANSI C468

Names that are likely to be confused must be avoided. The use of meaningful function names also

aids in understanding and maintenance of programs.

Descriptive comments should be embedded within the body of source code to describe processing

steps.

The following guidelines might help the use of comments judiciously:

 1. Describe blocks of statements, rather than commenting on every line.

 2. Use blank lines or indentation, so that comments are easily readable.

 3. Use appropriate comments; an incorrect comment is worse than no comment at all.

Statement Construction

the coding stage. Each statement should be simple and direct. While multiple statements per line are

allowed, try to use only one statement per line with necessary indentation. Consider the following code:

 if(quantity>0){code = 0; quantity = rate;}

 else { code = 1; sales = 0:)

Although it is perfectly valid, it could be reorganized as follows:

 if(quantity>0)

 {

 code = 0;

 quantity = rate;

 }

 else

 {

 code = 1;

 sales = 0:

 }

The general guidelines for construction of statements are:

 1. Use one statement per line.

 2. Use proper indentation when selection and looping structures are implemented.

 3. Avoid heavy nesting of loops, preferably not more than three levels.

 4. Use simple conditional tests; if necessary break complicated conditions into simple conditions.

 5. Use parentheses to clarify logical and arithmetic expressions.

 6. Use spaces, wherever possible, to improve readability.

Input/Output Formats

Input/output formats should be simple and acceptable to users. A number of guidelines should be

considered during coding.

 1. Keep formats simple.

 3. Label all interactive input requests.

 4. Label all output reports.

 5. Use output messages when the output contains some peculiar results.

Developing a C Program: Some Guidelines 469

Generality of Programs

Care should be taken to minimize the dependence of a program on a particular set of data, or on a

particular value of a parameter. Example:

 for(sum = 0, i=1; i <= 10; i++)

 sum = sum + i;

This loop adds numbers 1,2, …..10. This can be made more general as follows;

 sum =0;

 for(i =m; i <=n; i = i+ step);

 sum = sum + i;

The initial value m n, and the increment size step

during program execution. When m=2, n=100, and step =2, the loop adds all even numbers up to, and

including 100.

15.4 COMMON PROGRAMMING ERRORS

By now you must be aware that C has certain features that are easily amenable to bugs. Added to this,

errors and to see that these known errors are not present in the program. This section examines some

of the more common mistakes that a less experienced C programmer could make.

Missing Semicolons

Every C statement must end with a semicolon. A missing semicolon may cause considerable confusion

to the compiler and result in ‘misleading’ error messages. Consider the following statements:

a = x+y

b = m/n;

and location are incorrect. In such situations where there are no errors in a reported line, we should

check the preceding line for a missing semicolon.

There may be an instance when a missing semicolon might cause the compiler to go ‘crazy’ and

to produce a series of error messages. If they are found to be dubious errors, check for a missing

semicolon in the beginning of the error list.

Misuse of Semicolon

Another common mistake is to put a semicolon in a wrong place. Consider the following code:

 for(i = 1; i<=10; i++);

 sum = sum + i;

This code is supposed to sum all the integers from 1 to 10. But what actually happens is that only the

‘exit’ value of i is added to the sum. Other examples of such mistake are:

 1. while (x < Max);

 {

 }

Programming in ANSI C470

 2. if(T>= 200);

 grade = ‘A’;

A simple semicolon represents a null statement and therefore it is syntactically valid. The compiler

does not produce any error message. Remember, these kinds of errors are worse than syntax errors.

Use of = Instead of = =

It is quite possible to forget the use of double equal sings when we perform a relational test. Example:

if(code = 1)

 count ++;

It is a syntactically valid statement. The variable code is assigned 1 and then, because code = 1 is

true, the count is incremented. In fact, the above statement does not perform any relational test on code.

Irrespective of the previous value of code, count ++; is always executed.

Similar mistakes can occur in other control statements, such as for and while. Such a mistake in the

Missing Braces

It is common to forget a closing brace when coding a deeply nested loop. It will be usually detected by

the compiler because the number of opening braces should match with the closing ones. However, if

we put a matching brace in a wrong place, the compiler won’t notice the mistake and the program will

produce unexpected results.

Another serious problem with the braces is, not using them when multiple statements are to be

grouped together. For instance, consider the following statements:

 for(i=1; i <= 10; i++)

 sum1 = sum 1 +i;

 sum2 = sum2 + i*i;

 printf(“%d %d\n”, sum1,sum2);

This code is intended to compute sum1, sum2 for i varying from 1 to 10, in steps of 1 and then to

print their values. But, actually the for

sum = sum1 + i;

as its body and therefore the statement

sum2 = sum2 + i*i;

is evaluated only once when the loop is exited. The correct way to code this segment is to place braces

as follows:

 for(i=1; i<=10; i++)

 {

 sum1 = sum1 + i;

 sum2 = sum2 +i*i;

 }

 printf(“%d %d\n”, sum1 sum2);

In case, only one brace is supplied, the behaviour of the compiler becomes unpredictable.

Missing Quotes

Every string must be enclosed in double quotes, while a single character constant in single quotes. If we

miss them out, the string (or the character) will be interpreted as a variable name. Examples:

Developing a C Program: Some Guidelines 471

 if(response ==YES) /* YES is a string */

 Grade = A; /* A is a character constant */

Misusing Quotes

It is likely that we use single quotes whenever we handle single characters. Care should be exercised to

see that the associated variables are declared properly. For example, the statement

city = ‘M’;

would be invalid if city has been declared as a char variable with dimension (i.e., pointer to char).

Improper Comment Characters

Every comment should start with a /* and end with a */. Anything between them is ignored by the

compiler. If we miss out the closing */, then the compiler searches for a closing */ further down in the

*/, we may get an error

message. Consider the following lines:

 /* comment line 1

 statement1;

 statement2;

 /* comment line 2 */

 statement 3;

Since the closing */ is missing in the comment line 1, all the statements that follow, until the closing

comment */ in comment line 2 are ignored.

We should remember that C does not support nested comments. Assume that we want to comment

out the following segment:

 x = a–b;

 Y = c–d;

 /* compute ratio */

 ratio = x/y;

we may be tempted to add comment characters as follows:

 /* x = a–b;

 y = c–d;

 /* Compute ratio */

 ratio = x/y; */

lines between these two are ignored. The statement

ratio = x/y;

Programming in ANSI C472

is not commented out. The correct way to comment out this segment is shown as:

 /* x = a–b;

 y = c–d; */

 /* compute ratio */

 /* ratio = x/y; */

Undeclared Variables

C requires every variable to be declared for its type, before it is used. During the development of a large

program, it is quite possible to use a variable to hold intermediate results and to forget to declare it.

Forgetting the Precedence of Operators

Expressions are evaluated according to the precedence of operators. It is common among beginners to

forget this. Consider the statement

 if (value = product () >= 100)

 tax = 0.05 * value;

The call product () returns the product of two numbers, which is compared to 100. If it is equal to

or greater than 100, the relational test is true, and a 1 is assigned to value, otherwise a 0 is assigned.

In either case, the only values value can take on are 1 or 0. This certainly is not what the programmer

wanted.

The statement was actually expected to assign the value returned by product() to value and then

compare value with 100. If value was equal to or greater than 100, tax should have been computed,

using the statement

tax = 0.05 * value;

The error is due to the higher precedence of the relational operator compared to the assignment

 if(value = product()) >=100)

 tax = 0.05 * value;

Similarly, the logical operators && and || have lower precedence than arithmetic and relational

operators and among these two, && has higher precedence than ||. Try, if there is any difference

between the following statements:

 1. if(p > 50|| c > 50 && m > 60 && T > 180)

 x = 1;

 2. if((p > 50|| c > 50) && m > 60 && T > 180)

 x = 1;

 3. if((p > 50|| c > 50 && m > 60) && T > 180)

 x = 1;

Ignoring the Order of Evaluation of Increment/Decrement Operators

We often use increment or decrement operators in loops. Example

 i = 0;

 while ((c = getchar()) != ‘\n’;

Developing a C Program: Some Guidelines 473

 {

 string[i++] = c;

 }

 string[i–1] = ‘\n’;

The statement string[i++] = c; is equivalent to:

 string[i] = c;

 i = i+1;

This is not the same as the statement string[++i] = c; which is equivalent to

 i =i+1;

 string[i] = c;

Forgetting to Declare Function Parameters

Remember to declare all function parameters in the function header.

Mismatching of Actual and Formal Parameter Types
in Function Calls

When a function with parameters is called, we should ensure that the type of values passed, match with

the type expected by the called function. Otherwise, erroneous results may occur. If necessary, we may

use the type cast operator to change the type locally. Example:

y = cos((double)x);

Nondeclaration of Functions

Every function that is called should be declared in the calling function for the types of value it returns.

Consider the following program:

 main()

 {

 float a =12.75;

 float b = 7.36;

 printf(“%f\n”, division(a,b));

 }

 double division(float x, float y)

 {

 return(x/y);

 }

The function returns a double type value but this fact is not known to the calling function and

therefore it expects to receive an int type value. The program produces either meaningless results or

The function division is like any other variable for the main and therefore it should be declared as

double in the main.

Programming in ANSI C474

Now, let us assume that the function division is coded as follows:

 division(float x, float y)

 {

 return(x/y);

 }

Missing & Operator in scanf Parameters

& operator. If the variable code is

declared as an integer, then the statement

scanf(“%d”, code);

&code);

Remember, the compiler will not detect this error and you may get a crazy output.

Crossing the Bounds of an Array

All C indices start from zero. A common mistake is to start the index from 1. For example, the segment

 int x[10], sum i;

 Sum = 0;

 for (i = 1; i < = 10; i++)

 sum = sum + x[i];

as follows:

for(i=0;i<10;i++)

Forgetting a Space for Null character in a String

All character arrays are terminated with a null character and therefore their size should be declared to

hold one character more than the actual string size.

Using Uninitialized Pointers

An uninitialized pointer points to garbage. The following program is wrong:

 main()

 {

 int a, *ptr;

 a = 25;

 *ptr = a+5;

 }

The pointer ptr has not been initialized.

Developing a C Program: Some Guidelines 475

Missing Indirection and Address Operators

Another common error is to forget to use the operators * and & in certain places. Consider the following

program:

 main()

 {

 int m, *p1;

 m = 5;

 p1 = m;

 printf(“%d\n”, *p1);

 }

This will print some unknown value because the pointer assignment

p1 =m;

is wrong. It should be:

p1 = &m;

Consider the following expression:

y = p1 + 10;

Perhaps, y was expected to be assigned the value at location p1 plus 10. But it does not happen. y

will contain some unknown address value. The above expression should be rewritten as:

y = *p1 + 10;

Missing Parentheses in Pointer Expressions

The following two statements are not the same:

 x = *p1 + 1;

 x = *(p1 + 1);

p1 plus 1 to x, while the second would assign

the value at location p1 + 1.

Example: f(x) x * x + 1

The call y = f(a+b);

will be evaluated as y = a+b * a+b+1; which is wrong.

Some other mistakes that we commonly make are:

 1. Wrong indexing of loops.

 2. Wrong termination of loops.

 3. Unending loops.

 4. Use of incorrect relational test.

 5. Failure to consider all possible conditions of a variable.

 6. Trying to divide by zero.

scanf and printf statements.

 8. Forgetting truncation and rounding off errors.

Programming in ANSI C476

15.5 PROGRAM TESTING AND DEBUGGING

Testing and debugging refer to the tasks of detecting and removing errors in a program, so that the

program produces the desired results on all occasions. Every programmer should be aware of the fact

out, and no matter how much care is taken in coding, one can never say that the program would be 100

are likely to be present in the program.

Types of Errors

We have discussed a number of common errors. There might be many other errors, some obvious and

errors, logical errors, and latent errors.

Syntax errors

Any violation of rules of the language results in syntax errors. The compiler can detect and isolate such

errors. When syntax errors are present, the compilation fails and is terminated after listing the errors and

the line numbers in the source program, where the errors have occurred. Remember, in some cases, the

line number may not exactly indicate the place of the error. In other cases, one syntax error may result

in a long list of errors. Correction of one or two errors at the beginning of the program may eliminate the

entire list.

Run-time errors

the compiler. A program with these mistakes will run, but produce erroneous results and therefore, the

Logical errors

As the name implies, these errors are related to the logic of the program execution. Such actions

as taking a wrong path, failure to consider a particular condition, and incorrect order of evaluation

messages. Rather, they cause incorrect results. These errors are primarily due to a poor understanding

of the problem, incorrect translation of the algorithm into the program and a lack of clarity of hierarchy of

operators. Consider the following statement:

 if(x ==y)

 printf(“They are equal\n”);

when x and y

may not be executed at all. A test like while(x != y)

Latent errors

It is a ‘hidden’ error that shows up only when a particular set of data is used. For example, consider the

following statement:

ratio = (x+y)/(p–q);

An error occurs only when p and q are equal. An error of this kind can be detected only by using all

possible combinations of test data.

Developing a C Program: Some Guidelines 477

Program Testing

Testing is the process of reviewing and executing a program with the intent of detecting errors, which

may belong to any of the four kinds discussed above. We know that while the compiler can detect

execution of the program. Testing, therefore, should include necessary steps to detect all possible errors

process may include the following two stages:

 1. Human testing.

Human testing

begins. Human testing methods include code inspection by the programmer, code inspection by a test

group, and a review by a peer group. The test is carried out statement by statement and is analyzed with

style and choice of algorithm are also reviewed.

Computer-based testing involves two stages, namely compiler testing and run-time testing. Compiler

testing is the simplest of the two and detects yet undiscovered syntax errors. The program executes

when the compiler detects no more errors. Should it mean that the program is correct? Will it produce

be correct. Now comes the crucial test, the test for the expected output. The goal is to ensure that the

program produces expected results under all conditions of input data.

Test for correct output is done using test data with known results for the purpose of comparison. The

most important consideration here is the design or invention of effective test data. A useful criteria for

test data is that all the various conditions and paths that the processing may take during execution must

be tested.

Program testing can be done either at module (function) level or at program level. Module level test,

often known as unit test, is conducted on each of the modules to uncover errors within the boundary

of the module. Unit testing becomes simple when a module is designed to perform only one function.

Once all modules are unit tested, they should be integrated together to perform the desired function(s).

There are likely to be interfacing problems, such as data mismatch between the modules. An integration

test is performed to discover errors associated with interfacing.

Program Debugging

Debugging is the process of isolating and correcting the errors. One simple method of debugging is

to place print statements throughout the program to display the values of variables. It displays the

dynamics of a program and allows us to examine and compare the information at various points. Once

We can use the conditional compilation statements, discussed in Chapter 14, to switch on or off the

debugging statements.

Another approach is to use the process of deduction. The location of an error is arrived at using the

backtrack the incorrect results through the logic of the program

until the mistake is located. That is, beginning at the place where the symptom has been uncovered, the

program is traced backward until the error is located.

Programming in ANSI C478

15.6 PROGRAM EFFICIENCY

practices.

Execution Time

which could be applied while coding the program.

 1. Select the fastest algorithm possible.

 2. Simplify arithmetic and logical expressions.

 3. Use fast arithmetic operations, whenever possible.

 4. Carefully evaluate loops to avoid any unnecessary calculations within the loops.

 6. Use pointers for handling arrays and strings.

 2. Make it work before making it faster.

 3. Keep it right while trying to make it faster.

Memory Requirement

therefore, desirable to take all necessary steps to compress memory requirements.

 2. Use an algorithm that is simple and requires less steps.

 3. Declare arrays and strings with correct sizes.

 5. Try to evaluate and incorporate memory compression features available with the language.

Review Questions

 15.1 Discuss the various aspects of program design.

 15.4 Distinguish between the following:

 a. Syntactic errors and semantic errors.

 d. Debugging and testing.

Developing a C Program: Some Guidelines 479

 15.5 A program has been compiled and linked successfully. When you run this program you face one

or more of the following situations.

 a. Program is executed but no output.

 b. It produces incorrect answers.

 c. It does not stop running.

to locate them with the help of computer.

 15.7 In a program, two values are compared for convergence, using the statement

 if((x–y) < 0.00001) ...

 Dloes the statement contain any error? If yes, explain the error.

 15.8 A program contains the following if statements:

 if(x>1&&y == 0)p = p/x;

 if(x == 5|| p > 2) p = p+2;

cases that could be used to test the execution of every path shown.

 15.9 Given below is a function to compute the yth power of an integer x.

 power(int x, int y)

 {

 int p;

 p = y;

 while(y > 0)

 x *= y — —;

 return(x);

 }

 This function contains some bugs. Write a test procedure to locate the errors with the help of a

computer.

 15.10 A program reads three values from the terminal, representing the lengths of three sides of a box

namely length, width and height and prints a message stating whether the box is a cube, rectangle,

1 INTRODUCTION

One of the unique features of C language as compared to other high-level languages is that it allows

direct manipulation of individual bits within a word. Bit-level manipulations are used in setting a particular

bit or group of bits to 1 or 0. They are also used to perform certain numerical computations faster. As

pointed out in Chapter 3, C supports the following operators:

 1. Bitwise logical operators.

 2. Bitwise shift operators.

 3. One’s complement operator.

All these operators work only on integer type operands.

2 BITWISE LOGICAL OPERATORS

There are three logical bitwise operators. They are:

 ∑ Bitwise AND (&)

 ∑ Bitwise OR (|)

 ∑ Bitwise exclusive OR (^)

These are binary operators and require two integer-type operands. These operators work on their

as shown in Table 1.

Table 1 Result of Logical Bitwise Operations

op1 op2 op1 & op2 op1 | op2 op1 ^ op2

1 1 1 | 0

1 0 0 1 1

0 1 0 1 1

0 0 0 0 0

BIT-LEVEL PROGRAMMINGI
APPENDIX

Appendix I 481

Bitwise AND

The bitwise AND operator is represented by a single ampersand (&) and is surrounded on both sides

by integer expressions. The result of ANDing operation is 1 if both the bits have a value of 1; otherwise

it is 0. Let us consider two variables x and y whose values are 13 and 25. The binary representation of

these two variables are

 x - - -> 0000 0000 0000 1101

 y - - -> 0000 0000 0001 1001

If we execute statement

z = x & y ;

then the result would be:

 z - - -> 0000 0000 0000 1001

Although the resulting bit pattern represents the decimal number 9, there is no apparent connection

between the decimal values of these three variables.

Bitwise ANDing is often used to test whether a particular bit is 1 or 0. For example, the following

program tests whether the fourth bit of the variable is 1 or 0.

 #define TEST 8 /* represents 00........01000 */

 main()

 {

 int flag;

 if((flag & TEST) != 0) /* test 4th bit */

 {

 printf(“ Fourth bit is set \n”);

 }

Note that the bitwise logical operators have lower precedence than the relational operators and

therefore additional parenthes es are necessary as shown above.

The following program tests whether a given number is odd or even.

 main()

 {

 int test = 1;

 int number;

 printf(“Input a number \n”);

 scanf(“%d”, &number);

 while (number != –1)

 {

 if(number & test)

 print(“Number is odd\n\n”);

 else

 printf(“Number is even\n\n”);

Programming in ANSI C482

 printf(“Input a number \n”);

 scanf(“%d”, &number);

 }

 }

 Output

 Input a number

 20

 Number is even

 Input a number

 9

 Number is odd

 Input a number

 –1

Bitwise OR

The bitwise OR is represented by the symbol | (vertical bar) and is surrounded by two integer operands.

The result of OR operation is 1 if at least one of the bits has a value of 1; otherwise it is zero. Consider

the variables x and y discussed above.

 x - - -> 0000 0000 0000 1101

 y - - -> 0000 0000 0001 1001

 x|y - - -> 0000 0000 0001 1101 _______________________

 #define SET 8

 main()

 {

 int flag;

 flag = flag | SET;

 if ((flag & SET) != 0)

 {

 printf(“flag is set \n”);

 }

 }

The statement

 flag = flag | SET;

Appendix I 483

Bitwise Exclusive OR

The bitwise exclusive OR is represented by the symbol ^. The result of exclusive OR is 1 if only one of

the bits is 1; otherwise it is 0. Consider again the same variable x and y discussed above.

 x - - -> 0000 0000 0000 1101

 y - - -> 0000 0000 0001 1001

 x^y - - -> 0000 0000 0001 0100 _______________________

3 BITWISE SHIFT OPERATORS

The shift operators are used to move bit patterns either to the left or to the right. The shift operators are

represented by the symbols << and >> and are used in the following form:

 Left shift: op << n

 Right shift: op >> n

op is the integer expression that is to be shifted and n is the number of bit positions to be shifted.

The left-shift operation causes all the bits in the operand op to be shifted to the left by n positions.

The leftmost n bits in the original bit pattern will be lost and the rightmost n bit posi tions that are vacated

Similarly, the right-shift operation causes all the bits in the operand op to be shifted to the right by

n positions. The rightmost n bits will be lost. The leftmost n

with zero, if the op is an un signed integer. If the variable to be shifted is , then the operation is

machine dependent.

Both the operands op and n can be constants or variables. There are two restrictions on the value of

n. It may not be negative and it may not exceed the number of bits used to represent the left operand op.

Let us suppose x is an unsigned integer whose bit pattern is

 0100 1001 1100 1011

then, vacated

 positions

 x << 3 = 0100 1110 0101 1000
�

 x >> 3 = 000
�

0 1001 0011 1001

 vacated

 positions

Shift operators are often used for multiplication and division by powers of two.

Consider the following statement:

x = y << 1;

This statement shifts one bit to the left in y and then the result is assigned to x. The decimal value of

x will be the value of y multiplied by 2. Similarly, the statement

x = y >> 1;

shifts y one bit to the right and assigns the result to x. In this case, the value of x will be the value of y

divided by 2.

The shift operators, when combined with the logical bitwise operators, are useful for extracting

masking.

Masking is discussed in Section 5.

Programming in ANSI C484

4 BITWISE COMPLEMENT OPERATORS

The complement operator ~ (also called the one’s complement operator) is an unary operator and

 x = 1001 0110 1100 1011

 ~x = 0110 1001 0011 0100

This operator is often combined with the bitwise AND operator to turn off a particular bit. For example,

the statement

 x = 8; /* 0000 0000 0000 1000 */

 flag = flag & ~x;

would turn off the fourth bit in the variable .

5 MASKING

Masking refers to the process of extracting desired bits from (or transforming desired bits in) a variable

by using logical bitwise operation. The operand (a constant or variable) that is used to perform masking

is called the mask

 y = x & mask;

 y = x | mask;

Masking is used in many different ways.

 ∑ To decide bit pattern of an integer variable.

 ∑ To copy a portion of a given bit pattern to a new variable, while the remainder of the new variable

 ∑ To copy a portion of a given bit pattern to a new variable, while the remainder of the new variable

 ∑ To copy a portion of a given bit pattern to a new variable, while the remainder of the original bit

pattern is inverted within the new variable (using bitwise exclusive OR).

The following function uses a mask to display the bit pattern of a variable.

 void bit_pattern(int u)

 {

 int i, x, word;

 unsigned mask;

 mask = 1;

 word = 8 * sizeof(int);

 mask = mask << (word – 1);

 /* shift 1 to the leftmost position */

 for(i = 1; i<= word; i++)

 {

 x = (u & mask) ? 1 : 0; /* identify the bit */

 printf(“%d”, x); /* print bit value */

 mask >>= 1; /* shift mask by 11 position to right */

ASCII ASCII ASCII ASCII

 Value Character Value Character Value Character Value Character

000 NUL 027 ESC 054 6 081 Q

001 SOH 028 FS 055 7 082 R

002 STX 029 GS 056 8 083 S

003 ETX 030 RS 057 9 084 T

004 EOT 031 US 058 : 085 U

005 ENQ 032 blank 059 ; 086 V

006 ACK 033 ! 060 < 087 W

007 BEL 034 “ 061 = 088 X

008 BS 035 # 062 > 089 Y

009 HT 036 $ 063 ? 090 Z

010 LF 037 % 064 @ 091 [

011 VT 038 & 065 A 092 \

012 FF 039 ‘ 066 B 093]

013 CR 040 (067 C 094 ≠

014 SO 041) 068 D 095 -

015 SI 042 * 069 E 096 ¨

016 DLE 043 + 070 F 097 a

017 DC1 044 , 071 G 098 b

018 DC2 045 – 072 H 099 c

019 DC3 046 . 073 I 100 d

020 DC4 047 / 074 J 101 e

021 NAK 048 0 075 K 102 f

022 SYN 049 1 076 L 103 g

023 ETB 050 2 077 M 104 h

024 CAN 051 3 078 N 105 i

025 EM 052 4 079 O 106 j

026 SUB 053 5 080 P 107 k

ASCII VALUES

OF CHARACTERS

(Contd.)

II
APPENDIX

Programming in ANSI C486

ASCII ASCII ASCII ASCII

 Value Character Value Character Value Character Value Character

108 l 113 q 118 v 123 {

109 m 114 r 119 w 124 |

110 n 115 s 120 x 125 }

111 o 116 t 121 y 126 ~

112 p 117 u 122 z 127 DEL

 Note

 printed.

The C language is accompanied by a number of library functions that perform various tasks. The

reader should refer to the manual of the version of C that is being used.

<ctype.h> Character testing and conversion functions

<math.h> Mathematical functions

<stdio.h> Standard I/O library functions

<stdlib.h>

<string.h> String manipulation functions

<time.h> Time manipulation functions

Note:

 c - character type argument

 d - double precision argument

 i - integer argument

 l - long integer argument

 p - pointer argument

 s - string argument

 u - unsigned integer argument

An asterisk (*) denotes a pointer

ANSI C LIBRARY FUNCTIONSIII
APPENDIX

Programming in ANSI C488

unction Data type

returned

Task

<ctype.h>

isalnum(c) int Determine if argument is alphanumeric. Return nonzero value if

isalpha(c) int Determine if argument is alphabetic. Return nonzero value if true;

isascii(c) int Determine if argument is an ASCII character. Return nonzero value

iscntrl(c) int Determine if argument is an ASCII control character. Return nonzero

isdigit(c) int Determine if argument is a decimal digit. Return nonzero value if

isgraph(c) int Determine if argument is a graphic printing ASCII character. Return

int

isodigit(c) int Determine if argument is an octal digit. Return nonzero value if true;

isprint(c) int Determine if argument is a printing ASCII character. Return nonzero

ispunct(c) int Determine if argument is a punctuation char acter. Return nonzero

isspace(c) int

isupper(c) int Determine if argument is uppercase. Return nonzero value if true;

int

toascii(c) int Convert value of argument to ASCII.

int

toupper(c) int Convert letter to uppercase.

<math.h>

acos(d) double Return the arc cosine of d.

asin(d) double Return the arc sine of d.

atan(d) double Return the arc tangent of d.

double Return the arc tangent of d1/d2.

ceil(d) double

cos(d) double Return the cosine of d.

cosh(d) double Return the hyperbolic cosine of d.

Appendix III 489

unction Data type

returned

Task

double

fabs(d) double Return the absolute value of d.

double

double

labs(l) long int Return the absolute value of 1.

log(d) double Return the natural logarithm of d.

log10(d) double Return the logarithm (base 10) of d.

double

sin(d) double Return the sine of d.

sinh(d) double Return the hyperbolic sine of d.

sqrt(d) double Return the square root of d.

tan(d) double Return the tangent of d.

tanh(d) double Return the hyperbolic tangent of d.

<stdio.h>

fclose(f) int

feof(f) int

fgetc(f) int

char*

int

int

int

int

int

int

ftell(f) long int

int

getc(f) int

getchar(void) int Enter a single character from the standard input device.

gets(s) char* Enter string s from the standard input de vice.

printf(...) int Send data items to the standard output de vice.

int

putchar(c) int Send a single character to the standard output device.

puts(s) int Send string s to the standard output device.

void

scanf(...) int Enter data items from the standard input device.

Programming in ANSI C490

unction Data type

returned

Task

<stdlib.h>

abs(i) int Return the absolute value of i.

atof(s) double Convert string s to a double-precision quant ity.

atoi(s) int Convert string s to an integer.

atol(s) long Convert string s to a long integer.

void*

u2 bytes. Return a pointer to the begin ning of the allocated space.

void

free(p) void

malloc(u) void* Allocate u bytes of memory. Return a pointer to the beginning of the

allocated space.

rand(void) int Return a random positive integer.

void*

srand(u) void Initialize the random number generator.

system(s) int Pass command string s to the operating system. Return 0 if the

value typically –1.

<string.h>

int

s1 < s2; 0 if s1 and s2 are identical; and a positive value if s1 > s2.

int

Return a negative value if s1 < s2; 0 if s1 and s2 are identical;

and a value of s1 > s2.

char* Copy string s2 to string s1.

strlen(s) int Return the number of characters in string s.

char*

character \0).

<time.h>

double

elapsed time beyond a designated base time (see the time function).

time(p) long int Return the number of seconds elapsed beyond a designated base

time.

 Note

INVENTORY MANAGEMENT SYSTEM

The project aims at developing an inventory management system using the C language that enables an

organization to maintain its inventory.

The project demonstrates the creation of a user interface of a system, without the use of C Graphics

library. The application uses basic C functions to generate menus, show message boxes and print text

on the screen. To display customized text with colors and fonts according to application requirements,

functions have been created in the application, which fetch the exact video memory addresses of a

target location, to write text at the particular location.

and string manipulation functions.

PROJECTSIV
APPENDIX

Programming in ANSI C492

/**

 Application: Inventry Management System

 Compiled on: Borland Turbo C++ 3.0

**/

#include <conio.h>

#include <stdio.h>

#include <stdlib.h>

#include <dos.h>

#include <graphics.h>

#include <string.h>

#define TRUE 1

#define FALSE 0

/* List of Global variables used in the application*/

int mboxbrdrclr,mboxbgclr,mboxfgclr; /* To set colors for all message boxes in
 the application*/

int menutxtbgclr,menutxtfgclr,appframeclr; /* To set the frame and color’s for menu
 items’s*/

int section1_symb,section1_bgclr,section1_fgclr; /* To set color of section 1, the region
 around the menu options*/

int section2_symb,section2_bgclr,section2_fgclr; /* To set color of section 2, the section
 on the right of the menu options*/

int fEdit;

int animcounter;

static struct struct_stock /* Main database structure*/

{

 char itemcode[8];

 char itemname[50];

 float itemrate;

 float itemqty;

 int minqty; /*Used for Reorder level, which is the
 minimum no of stock*/

}inv_stock;

struct struct_bill

{

 char itemcode[8];

 char itemname[50];

Appendix IV 493

 float itemrate;

 float itemqty;

 float itemtot;

}item_bill[100];

char password[8];

const long int stocksize=sizeof(inv_stock); /*stocksize stores the size of the
 struct_stock*/

float tot_investment;

int numItems; /*To count the no of items in the stock*/

int button,column,row; /*To allow mouse operations in the application*/

FILE *dbfp; /*To perform database file operations on
 “inv_stock.dat”*/

int main(void)

{

 float issued_qty;

 char userchoice,code[8];

 int flag,i,itemsold;

 float getInvestmentInfo(void);

 FILE *ft;

 int result;

 getConfiguration();

/* Opens & set ‘dbfp’ globally so that it is accessible from anywhere in the application*/

dbfp=fopen(“d:\invstoc.dat”,”r+”);

if(dbfp==NULL)

 {

 clrscr();

 printf(“\nDatabase does not exists.\nPress Enter key to create it. To exit, press any
 other key.\n “);

 fflush(stdin);

 if(getch()==13)

 {

 dbfp=fopen(“d:\invstoc.dat”,”w+”);

 printf(“\nThe database for the application has been created.\nYou must restart the
 application.\nPress any key to continue.\n”);

 fflush(stdin);

 getch();

 exit(0);

 }

 else

Programming in ANSI C494

 {

 exit(0);

 }

 }

 /* Application control will reach here only if the database file has been opened success-
 fully*/

 if(initmouse()==0)

 messagebox(10,33,”Mouse could not be loaded.”,”Error “,’

‘,mboxbrdrclr,mboxbgclr,mboxfgclr,0);

 showmouseptr();

 _setcursortype(_NOCURSOR);

 while(1)

 {

 clrscr();

 fEdit=FALSE;

 ShowMenu();

 numItems=0;

 rewind(dbfp);

 /* To calculate the number of records in the database*/

 while(fread(&inv_stock,stocksize,1,dbfp)==1)

 ++numItems;

 textcolor(menutxtfgclr);

 textbackground(menutxtbgclr);

 gotopos(23,1);

 cprintf(“Total Items in Stock: %d”,numItems);

 textcolor(BLUE);

 textbackground(BROWN);

 fflush(stdin);

 /*The application will wait for user response */

 userchoice=getUserResponse();

 switch(userchoice)

 {

 /* To Close the application*/

 case ‘0’:

 BackupDatabase(); /*Backup the Database file to secure data*/

 flushall();

 fclose(dbfp);

 fcloseall();

 print2screen(12,40,”Thanks for Using the application.”,BROWN,BLUE,0);

 sleep(1);

Appendix IV 495

 setdefaultmode();

 exit(0);

 /* To Add an item*/

 case ‘1’:

 if(getdata()==1)

 {

 fseek(dbfp,0,SEEK_END);

 /*Write the item information into the database*/

 fwrite(&inv_stock,stocksize,1,dbfp);

 print2screen(13,33,”The item has been successfully added. “,BROWN,BLUE,0);

 getch();

 }

 break;

 /* To edit the item information*/

 case ‘2’:

 print2screen(2,33,”Enter Item Code>”,BROWN,BLUE,0);gotopos(2,54);fflush(stdin);

 scanf(“%s”,&code);

 fEdit=TRUE;

 if(CheckId(code)==0)

 {

 if(messagebox(0,33,”Press Enter key to edit the item.”,”Confirm”,’

 ‘,mboxbrdrclr,mboxbgclr,mboxfgclr,0)!=13)

 {

 messagebox(10,33,”The item information could not be modified. Please try
 again.”,”Edit “,’ ‘,mboxbrdrclr,mboxbgclr,mboxfgclr,0);

 fEdit=FALSE;

 break;

 }

 fEdit=TRUE;

 getdata();

 fflush(stdin);

 fseek(dbfp,-stocksize,SEEK_CUR);

 fwrite(&inv_stock,stocksize,1,dbfp);

 }

 else

 messagebox(10,33,”The item is not available in the database.”,”No records found”,’
 ‘,mboxbrdrclr,mboxbgclr,mboxfgclr,0);

 fEdit=FALSE;

 break;

Programming in ANSI C496

 /* To show information about an an Item*/

 case ‘3’:

 print2screen(2,33,”Enter Item Code: “,BROWN,BLUE,0);gotopos(2,55);fflush(stdin);

 scanf(“%s”,&code);

 flag=0;

 rewind(dbfp);

 while(fread(&inv_stock,stocksize,1,dbfp)==1)

 {

 if(strcmp(inv_stock.itemcode,code)==0)

 {

 DisplayItemInfo();

 flag=1;

 }

 }

 if(flag==0)

 messagebox(10,33,”The item is not available.”,”No records found “,’

 ‘,mboxbrdrclr,mboxbgclr,mboxfgclr,0);

 break;

 /* To show information about all items in the database*/

 case ‘4’:

 if(numItems==0)

 messagebox(10,33,”No items are available. “,”Error “,’

 ‘,mboxbrdrclr,mboxbgclr,mboxfgclr,0);

 textcolor(BLUE);

 textbackground(BROWN);

 gotopos(3,33);

 cprintf(“Number of Items Available in Stock: %d”,numItems);

 gotopos(4,33);

 getInvestmentInfo();

 cprintf(“Total Investment :Rs.%.2f”,tot_investment);

 gotopos(5,33);

 cprintf(“Press Enter To View. Otherwise Press Any Key...”);fflush(stdin);

 if(getch()==13)

 {

 rewind(dbfp);

 while(fread(&inv_stock,stocksize,1,dbfp)==1); /*List All records*/

 DisplayItemRecord(inv_stock.itemcode);

 }

 textcolor(BLUE);

 break;

Appendix IV 497

 /* To issue Items*/

 case ‘5’:

 itemsold=0;

 i=0;

 top:

 print2screen(3,33,”Enter Item Code: “,BROWN,BLUE,0);fflush(stdin);gotopos(3,55);

 scanf(“%s”,&code);

 if(CheckId(code)==1)

 if(messagebox(10,33,”The item is not available.”,”No records found “,’
 ‘,mboxbrdrclr,mboxbgclr,mboxfgclr,0)==13)

 goto top;

 else

 goto bottom;

 rewind(dbfp);

 while(fread(&inv_stock,stocksize,1,dbfp)==1)

 {

 if(strcmp(inv_stock.itemcode,code)==0) /*To check if the item code is available in
 the database*/

 {

 issued_qty=IssueItem();

 if(issued_qty > 0)

 {

 itemsold+=1;

 strcpy(item_bill[i].itemcode,inv_stock.itemcode);

 strcpy(item_bill[i].itemname,inv_stock.itemname);

 item_bill[i].itemqty=issued_qty;

 item_bill[i].itemrate=inv_stock.itemrate;

 item_bill[i].itemtot=inv_stock.itemrate*issued_qty;

 i+=1;

 }

 print2screen(19,33,”Would you like to issue another item(Y/

 N)?”,BROWN,BLUE,0);fflush(stdin);gotopos(19,45);

 if(toupper(getch())==’Y’)

 goto top;

 bottom:

 break;

 }

 }

 break;

 /* Items to order*/

 case ‘6’:

 if(numItems<=0)

Programming in ANSI C498

 {

 messagebox(10,33,”No items are available. “,”Items Not Found “,’

 ‘,mboxbrdrclr,mboxbgclr,mboxfgclr,0);

 break;

 }

 print2screen(3,33,”Stock of these items is on the minimum

 level:”,BROWN,RED,0);fflush(stdin);

 flag=0;

 fflush(stdin);

 rewind(dbfp);

 while(fread(&inv_stock,stocksize,1,dbfp)==1)

 {

 if(inv_stock.itemqty <= inv_stock.minqty)

 {

 DisplayItemInfo();

 flag=1;

 }

 }

 if(flag==0)

 messagebox(10,33,”No item is currently at reorder level.”,”Reorder Items”,’
 ‘,mboxbrdrclr,mboxbgclr,mboxfgclr,0);

 break;

 default:

 messagebox(10,33,”The option you have entered is not available.”,”Invalid Option “,’
 ‘,mboxbrdrclr,mboxbgclr,mboxfgclr,0);

 break;

 }

 }

}

/*Display Menu & Skins that the user will see*/

ShowMenu()

{

 if(section1_bgclr != BROWN || section1_symb != ‘ ‘)

 fillcolor(2,1,23,39,section1_symb,section1_bgclr,section1_fgclr,0);

 if(section2_bgclr != BROWN || section2_symb != ‘ ‘)

 fillcolor(2,40,23,79,section2_symb,section2_bgclr,section2_fgclr,0);

 print2screen(2,2,”1: Add an Item”,menutxtbgclr,menutxtfgclr,0);

 print2screen(4,2,”2: Edit Item Information”,menutxtbgclr,menutxtfgclr,0);

 print2screen(6,2,”3: Show Item Information”,menutxtbgclr,menutxtfgclr,0);

 print2screen(8,2,”4: View Stock Report”,menutxtbgclr,menutxtfgclr,0);

 print2screen(10,2,”5: Issue Items from Stock”,menutxtbgclr,menutxtfgclr,0);

Appendix IV 499

 print2screen(12,2,”6: View Items to be Ordered “,menutxtbgclr,menutxtfgclr,0);

 print2screen(14,2,”0: Close the application”,menutxtbgclr,menutxtfgclr,0);

 htskin(0,0,’ ‘,80,appframeclr,LIGHTGREEN,0);

 htskin(1,0,’ ‘,80,appframeclr,LIGHTGREEN,0);

 vtskin(0,0,’ ‘,24,appframeclr,LIGHTGREEN,0);

 vtskin(0,79,’ ‘,24,appframeclr,LIGHTGREEN,0);

 htskin(24,0,’ ‘,80,appframeclr,LIGHTGREEN,0);

 vtskin(0,31,’ ‘,24,appframeclr,LIGHTGREEN,0);

 return;

}

/*Wait for response from the user & returns choice*/

getUserResponse()

{

 int ch,i;

 animcounter=0;

 while(!kbhit())

 {

 getmousepos(&button,&row,&column);

 /*To show Animation*/

 BlinkText(0,27,”Inventory Management System”,1,YELLOW,RED,LIGHTGRAY,0,50);

 animcounter+=1;

 i++;

 if(button==1 && row==144 && column>=16 && column<=72) /*Close*/

 return(‘0’);

 if(button==1 && row==16 && column>=16 && column<=136) /*Add New Item*/

 return(‘1’);

 if(button==1 && row==32 && column>=16 && column<=144) /*Edit Item*/

 return(‘2’);

 if(button==1 && row==48 && column>=16 && column<=160) /*Show an Item*/

 return(‘3’);

 if(button==1 && row==64 && column>=16 && column<=104) /*Stock Report*/

 return(‘4’);

 if(button==1 && row==80 && column>=16 && column<=144) /*Issue an Item*/

 return(‘5’);

 if(button==1 && row==96 && column>=16 && column<=152) /*Items to order*/

 return(‘6’);

 }

Programming in ANSI C500

 ch=getch();

 return ch;

}

/*Reads a valid id and its information,returns 0 if id already exists*/

getdata()

{

 char tmp[8];

 float tst;

 _setcursortype(_NORMALCURSOR);

 print2screen(3,33,”Enter Item Code: “,BROWN,BLUE,0);fflush(stdin);gotopos(3,53);

 scanf(“%s”,&tmp);

 if(CheckId(tmp)==0 && fEdit == FALSE)

 {

 messagebox(10,33,”The id already exists. “,”Error “,’

 ‘,mboxbrdrclr,mboxbgclr,mboxfgclr,0);

 return 0;

 }

 strcpy(inv_stock.itemcode,tmp); /*Means got a correct item code*/

 print2screen(4,33,”Name of the Item: “,BROWN,BLUE,0);fflush(stdin);gotopos(4,53);

 gets(inv_stock.itemname);

 print2screen(5,33,”Price of Each Unit: “,BROWN,BLUE,0);fflush(stdin);gotopos(5,53);

 scanf(“%f”,&inv_stock.itemrate);

 print2screen(6,33,”Quantity: “,BROWN,BLUE,0);fflush(stdin);gotopos(6,53);

 scanf(“%f”,&inv_stock.itemqty);

 print2screen(7,33,”Reorder Level: “,BROWN,BLUE,0);fflush(stdin);gotopos(7,53);

 scanf(“%d”,&inv_stock.minqty);

 _setcursortype(_NOCURSOR);

 return 1;

}

/*Returns 0 if the id already exists in the database, else returns 1*/

int CheckId(char item[8])

{

 rewind(dbfp);

 while(fread(&inv_stock,stocksize,1,dbfp)==1)

 if(strcmp(inv_stock.itemcode,item)==0)

 return(0);

 return(1);

}

/*Displays an Item*/

DisplayItemRecord(char idno[8])

Appendix IV 501

{

 rewind(dbfp);

 while(fread(&inv_stock,stocksize,1,dbfp)==1)

 if(strcmp(idno,inv_stock.itemcode)==0)

 DisplayItemInfo();

 return;

}

/*Displays an Item information*/

DisplayItemInfo()

{

 int r=7;

 textcolor(menutxtfgclr);

 textbackground(menutxtbgclr);

 gotopos(r,33);

 cprintf(“Item Code: %s”,” “);

 gotopos(r,33);

 cprintf(“Item Code: %s”,inv_stock.itemcode);

 gotopos(r+1,33);

 cprintf(“Name of the Item: %s”,” “);

 gotopos(r+1,33);

 cprintf(“Name of the Item: %s”,inv_stock.itemname);

 gotopos(r+2,33);

 cprintf(“Price of each unit: %.2f”,” “);

 gotopos(r+2,33);

 cprintf(“Price of each unit: %.2f”,inv_stock.itemrate);

 gotopos(r+3,33);

 cprintf(“Quantity in Stock: %.4f”,” “);

 gotopos(r+3,33);

 cprintf(“Quantity in Stock: %.4f”,inv_stock.itemqty);

 gotopos(r+4,33);

 cprintf(“Reorder Level: %d”,” “);

 gotopos(r+4,33);

 cprintf(“Reorder Level: %d”,inv_stock.minqty);

 gotopos(r+5,33);

 cprintf(“\nPress Any Key...”);fflush(stdin);getch();

 textbackground(BROWN);

 textcolor(BLUE);

 return;

}

/*This function will return 0 if an item cannot issued, else issues the item*/

IssueItem()

Programming in ANSI C502

{

 float issueqnty;

 DisplayItemInfo();

 print2screen(15,33,”Enter Quantity: “,BROWN,BLUE,0);fflush(stdin);gotopos(15,49);

 scanf(“%f”,&issueqnty);

 /*If the stock of the item is greater than minimum stock*/

 if((inv_stock.itemqty - issueqnty) >= inv_stock.minqty)

 {

 textcolor(BLUE);

 textbackground(BROWN);

 gotopos(18,33);

 cprintf(“%.4f Item(s) issued.”,issueqnty);

 gotopos(19,33);

 cprintf(“You should pay RS. %.2f”,issueqnty*inv_stock.itemrate);getch();

 textcolor(BLUE);

 inv_stock.itemqty-=issueqnty; /*Updating quantity for the item in stock*/

 fseek(dbfp,-stocksize,SEEK_CUR);

 fwrite(&inv_stock,stocksize,1,dbfp);

 return issueqnty;

 }

 /* If the stock of the item is less than minimum stock.ie Reorder level*/

 else

 {

 messagebox(10,33,”Insufficient quantity in stock.”,”Insufficient Stock”,’

 ‘,mboxbrdrclr,mboxbgclr,mboxfgclr,0);

 gotopos(17,33);

 textcolor(BLUE);

 textbackground(BROWN);

 cprintf(“ONLY %.4f pieces of the Item can be issued.”,inv_stock.itemqty-inv_stock.minqty);

 gotopos(18,33);

 cprintf(“Press Any Key...”);getch();

 textcolor(BLUE);

 textbackground(BROWN);

 return 0;

 }

}

/* Calculates the total investment amount for the stock available*/

float getInvestmentInfo(void)

{

 tot_investment=0;

Appendix IV 503

 rewind(dbfp);

 while(fread(&inv_stock,stocksize,1,dbfp)==1)

 tot_investment+=(inv_stock.itemrate*inv_stock.itemqty);

 return tot_investment;

}

/* Creates a backup file “Bakckup” of “inv_stock.dat”*/

BackupDatabase(void)

{

 FILE *fback;

 fback=fopen(“d:/Backup.dat”,”w”);

 rewind(dbfp);

 while(fread(&inv_stock,stocksize,1,dbfp)==1)

 fwrite(&inv_stock,stocksize,1,fback);

 fclose(fback);

 return;

}

/*This structure is used color settings for the application*/

struct colors

{

 char cfg_name[10];

 int mboxbrdrclr;

 int mboxbgclr;

 int mboxfgclr;

 int menutxtbgclr;

 int menutxtfgclr;

 int appframeclr;

 int section1_symb;

 int section1_bgclr;

 int section1_fgclr;

 int section2_symb;

 int section2_bgclr;

 int section2_fgclr;

}clr;

const long int clrsize=sizeof(clr);

/* Gets the display configuration for the application*/

getConfiguration()

Programming in ANSI C504

{

 FILE *flast;

 flast=fopen(“lastcfg”,”r+”);

 if(flast==NULL)

 {

 SetDefaultColor();

 return 0;

 }

 rewind(flast);

 /*Reads the first record.*/

 fread(&clr,clrsize,1,flast);

#ifdef OKAY

 if(strcmp(clr.cfg_name,”lastclr”)!=0)

 {

 SetDefaultColor();

 fclose(flast);

 return 0;

 }

#endif

 mboxbrdrclr=clr.mboxbrdrclr;mboxbgclr=clr.mboxbgclr;mboxfgclr=clr.mboxfgclr;

 menutxtbgclr=clr.menutxtbgclr;menutxtfgclr=clr.menutxtfgclr;appframeclr=clr.appframeclr;

 section1_symb=clr.section1_symb;section1_bgclr=clr.section1_bgclr;section1_fgclr=clr.section1_fgclr;

 section2_symb=clr.section2_symb;section2_bgclr=clr.section2_bgclr;section2_fgclr=clr.section2_fgclr;

 fclose(flast);

 return 1;

}

/* Sets the default color settings for the application*/

SetDefaultColor()

{

 mboxbrdrclr=BLUE,mboxbgclr=GREEN,mboxfgclr=WHITE;

 menutxtbgclr=BROWN,menutxtfgclr=BLUE,appframeclr=CYAN;

 section1_symb=’ ‘,section1_bgclr=BROWN,section1_fgclr=BLUE;

 section2_symb=’ ‘,section2_bgclr=BROWN,section2_fgclr=BLUE;

 return 1;

}

/* Adds animation to a text */

BlinkText(const int r,const int c,char txt[],int bgclr,int fgclr,int BGCLR2,int FGCLR2,int
blink,const int dly)

Appendix IV 505

{

 int len=strlen(txt);

 BGCLR2=bgclr;FGCLR2=BLUE;

 htskin(r,c,’ ‘,len,bgclr,bgclr,0);

 print2screen(r,c,txt,bgclr,fgclr,blink);

 write2screen(r,c+animcounter+1,txt[animcounter],BGCLR2,FGCLR2,0);

 write2screen(r,c+animcounter+2,txt[animcounter+1],BGCLR2,FGCLR2,0);

 write2screen(r,c+animcounter+3,txt[animcounter+2],BGCLR2,FGCLR2,0);

 write2screen(r,c+animcounter+4,txt[animcounter+3],BGCLR2,FGCLR2,0);

 write2screen(r,c+animcounter+5,txt[animcounter+4],BGCLR2,FGCLR2,0);

 write2screen(r,c+animcounter+6,txt[animcounter+5],BGCLR2,FGCLR2,0);

 delay(dly*2);

 write2screen(r,c+animcounter+1,txt[animcounter],bgclr,fgclr,0);

 write2screen(r,c+animcounter+2,txt[animcounter+1],bgclr,fgclr,0);

 write2screen(r,c+animcounter+3,txt[animcounter+2],bgclr,fgclr,0);

 write2screen(r,c+animcounter+4,txt[animcounter+3],bgclr,fgclr,0);

 write2screen(r,c+animcounter+5,txt[animcounter+4],bgclr,fgclr,0);

 write2screen(r,c+animcounter+6,txt[animcounter+5],bgclr,fgclr,0);

 animcounter+=1;

 if(animcounter+5 >= len) animcounter=0;

 return;

}

/* Displays a single character with its attrribute*/

write2screen(int row,int col,char ch,int bg_color,int fg_color,int blink)

{

 int attr;

 char far *v;

 char far *ptr=(char far*)0xB8000000;

 if(blink!=0)

 blink=128;

 attr=bg_color+blink;

 attr=attr<<4;

 attr+=fg_color;

 attr=attr|blink;

Programming in ANSI C506

 v=ptr+row*160+col*2; /*Calculates the video memory address corresponding to row & column*/

 *v=ch;

 v++;

 *v=attr;

 return 0;

}

/* Prints text with color attribute direct to the screen*/

print2screen(int row,int col,char string[],int bg_color,int fg_color,int blink)

{

 int i=row,j=col,strno=0,len;

 len=strlen(string);

 while(j<80)

 {

 j++;

 if(j==79)

 {

 j=0;

 i+=1;

 }

 write2screen(i,j,string[strno],bg_color,fg_color,blink); /*See below function*/

 strno+=1;

 if(strno > len-1)

 break;

 }

 return;

}

/* Prints text horizontally*/

htskin(int row,int column,char symb,int no,int bg_color,int fg_color,int blink)

{

 int i;

 for(i=0;i<no;i++)

 write2screen(row,column++,symb,bg_color,fg_color,blink); /*Print one symbol*/

 return;

}

/*Print text vertically*/

vtskin(int row,int column,char symb,int no,int bg_color,int fg_color,int blink)

{

 int i;

 for(i=0;i<no;i++)

Appendix IV 507

 write2screen(row++,column,symb,bg_color,fg_color,blink); /*Print one symbol*/

 return;

}

/* Shows a message box*/

messagebox(int row,int column,char message[50],char heading[10],char symb,int borderclr,int bg_
color,int fg_color,int blink)

{

 int len;

 char key,image[1000];

 len=strlen(message);

 capture_image(row,column,row+3,column+len+7,&image);

 draw_mbox(row,column,row+3,column+len+7,symb,symb,borderclr,YELLOW,blink,borderclr,YELLOW,blink);

 fillcolor(row+1,column+1,row+2,column+len+6,’ ‘,bg_color,bg_color,0);

 print2screen(row+1,column+2,message,bg_color,fg_color,blink);

 print2screen(row+2,column+2,”Press Any Key... “,bg_color,fg_color,blink);

 print2screen(row,column+1,heading,borderclr,fg_color,blink);

 sound(400);

 delay(200);

 nosound();

 fflush(stdin);

 key=getch();

 put_image(row,column,row+3,column+len+7,&image);

 return key;

}

/* Fills color in a region*/

fillcolor(int top_row,int left_column,int bottom_row,int right_column,char symb,int bg_color,int
fg_color,int blink)

{

 int i,j;

 for(i=top_row;i<=bottom_row;i++)

 htskin(i,left_column,symb,right_column-left_column+1,bg_color,fg_color,blink);

 return;

}

/* Prints a message box with an appropriate message*/

draw_mbox(int trow,int tcolumn,int brow,int bcolumn,char hsymb,char vsymb,int hbg_color,int hfg_
color,int hblink,int vbg_color,int vfg_color,int vblink)

{

 htskin(trow,tcolumn,hsymb,bcolumn-tcolumn,hbg_color,hfg_color,hblink);

 htskin(brow,tcolumn,hsymb,bcolumn-tcolumn,hbg_color,hfg_color,hblink);

Programming in ANSI C508

 vtskin(trow,tcolumn,vsymb,brow-trow+1,vbg_color,vfg_color,vblink);

 vtskin(trow,bcolumn,vsymb,brow-trow+1,vbg_color,vfg_color,vblink);

 return;

}

/* Copies the txt mode image below the messagebox*/

capture_image(int toprow,int leftcolumn,int bottomrow,int rightcolumn,int *image)

{

 char far *vidmem;

 int i,j,count;

 count=0;

 for(i=toprow;i<=bottomrow;i++)

 for(j=leftcolumn;j<=rightcolumn;j++)

 {

 vidmem=(char far*)0xB8000000+(i*160)+(j*2); /*Calculates the video memory address
corresponding to row & column*/

 image[count]=*vidmem;

 image[count+1]=*(vidmem+1);

 count+=2;

 }

 return;

}

/* Places an image on the screen*/

put_image(int toprow,int leftcolumn,int bottomrow,int rightcolumn,int image[])

{

 char far *ptr=(char far*)0xB8000000;

 char far *vid;

 int i,j,count;

 count=0;

 for(i=toprow;i<=bottomrow;i++)

 for(j=leftcolumn;j<=rightcolumn;j++)

 {

 vid=ptr+(i*160)+(j*2); /*Calculates the video memory address corresponding to row &
 column*/

 *vid=image[count];

 *(vid+1)=image[count+1];

 count+=2;

 }

 return;

}

Appendix IV 509

/* To move the curser position to desired position*/

gotopos(int r,int c)

{

 union REGS i,o;

 i.h.ah=2;

 i.h.bh=0;

 i.h.dh=r;

 i.h.dl=c;

 int86(16,&i,&o);

 return 0;

}

union REGS i,o;

/* Initialize the mouse*/

initmouse()

{

 i.x.ax=0;

 int86(0x33,&i,&o);

 return(o.x.ax);

}

/* Shows the mouse pointer*/

showmouseptr()

{

 i.x.ax=1;

 int86(0x33,&i,&o);

 return;

}

/* Get the mouse position*/

getmousepos(int *button,int *x,int *y)

{

 i.x.ax=3;

 int86(0x33,&i,&o);

 *button=o.x.bx;

 *x=o.x.dx;

 *y=o.x.cx;

 return 0;

}

Programming in ANSI C510

/* Restores the default text mode*/

setdefaultmode()

{

 set25x80();

 setdefaultcolor();

 return;

}

/* Sets the default color and cursor of screen*/

setdefaultcolor()

{

 int i;

 char far *vidmem=(char far*)0xB8000000;

 window(1,1,80,25);

 clrscr();

 for (i=1;i<4000;i+=2)

 *(vidmem+i)=7;

_setcursortype(_NORMALCURSOR);

return;

}

/* Sets 25x80 Text mode*/

set25x80()

{

 asm mov ax,0x0003;

 asm int 0x10;

 return;

}

Appendix IV 511

Programming in ANSI C512

Appendix IV 513

Programming in ANSI C514

Appendix IV 515

Programming in ANSI C516

Appendix IV 517

Programming in ANSI C518

Appendix IV 519

Programming in ANSI C520

RECORD ENTRY SYSTEM

The objective of the record entry system is to develop a login-based record keeping system, which has

nested menus and different interfaces for different sets of users.

application provides a basic menu, which has menu options for both types of users. According to the

selection made by a user, the user is prompted to enter his login name and password. On successfully

validating the user name and password, a menu is displayed to the user according to his level. For

example, an employee after logging into the system, can record his Log In and Log Out timings.

The project demonstrates working with date and time in C, showing ‘*’ characters when user types

the password, user authentication and two levels of menus for each type of user. The project also adds

validations on user input to ensure proper data entry into the database.

The project uses various C concepts, such as while loop, if statement and switch case statement to

display the required functionality.

Appendix IV 521

/**

 Application: Record Entry System

 Compiled on: Borland Turbo C++ 3.0

**/

#include <stdio.h>

#include <conio.h>

#include <string.h>

#include <dos.h>

#include <ctype.h>

void dataentry(void);

void selectAdminOption(void);

void getData(int option);

int showAdminMenu;

void main()

{

 int cancelOption,timeOption,entryOption,exitOption;

 char choice[1];

 char selectOption[1];

 textcolor(YELLOW);

 cancelOption=0;

 /* Shows the main menu for the application*/

 while (cancelOption==0)

 {

 clrscr();

 gotoxy(30,7);

 printf(“Please Select an Action—>”);

 gotoxy(30,10);

 printf(“Daily Time Record [1] “);

 gotoxy(30,11);

 printf(“Data Entry [2] “);

 gotoxy(30,12);

 printf(“Close [3] “);

 gotoxy(30,15);

 printf(“Please Enter Your Choice (1/2/3): “);

 scanf(“%s”,&choice);

Programming in ANSI C522

 timeOption=strcmp(choice,”1”);

 entryOption=strcmp(choice,”2”);

 exitOption=strcmp(choice,”3”);

 if (timeOption==0)

 {

 clrscr();

 gotoxy(23,6);

 printf(“DAILY EMPLOYEE TIME RECORDING SYSTEM”);

 gotoxy(16,24);

 printf(“Input Any Other key to Return to Previous Screen.”);

 gotoxy(31,9);

 printf(“[1] Employee Log In “);

 gotoxy(31,10);

 printf(“[2] Employee Log Out”);

 gotoxy(28,12);

 printf(“Please Enter Your Option: “);

 scanf(“%s”,&selectOption);

 if (strcmp(selectOption,”1”)==0)

 {

 getData(5);

 }

 if (strcmp(selectOption,”2”)==0)

 {

 getData(6);

 }

 cancelOption=0;

 }

 if (entryOption==0)

 {

 dataentry();

 cancelOption=0;

 }

 if (exitOption==0)

 {

 cancelOption=1;

 }

 if (!(timeOption==0 || entryOption==0 || exitOption==0))

 {

 gotoxy(10,17);

Appendix IV 523

 printf(“You Have Entered an Invalid Option. Please Choose Either 1, 2 or 3. “);

 getch();

 cancelOption=0;

 }

 }

 clrscr();

 gotoxy(23,13);

 printf(“The Application will Close Now. Thanks!”);

 getch();

}

/* This function provides logic for data entry to be done for the system.

Access to Data Entry screens will be only allowed to administrator user.*/

void dataentry(void)

{

char adminName[10], passwd[5],buffer[1];

char tempo[6],sel[1];

int validUserNameOption,validUserPwdOption,returnOption,UserName,inc,tmp;

char plus;

 clrscr();

 validUserNameOption=0;

 validUserPwdOption=0;

 while (validUserPwdOption==0)

 {

 clrscr();

 while (validUserNameOption==0)

 {

 clrscr();

 gotoxy(20,5);

 printf(“IT SOFTWARE DATA ENTRY SYSTEM-ADMIN INTERFACE”);

 gotoxy(20,24);

 printf(“Info: Type return to go back to the main screen.”);

 gotoxy(28,10);

 printf(“Enter Administrator Name: “);

 scanf(“%s”,&adminName);

 returnOption=strcmp(adminName,”return”);

 UserName=strcmp(adminName,”admin”);

 if (returnOption==0)

 {

Programming in ANSI C524

 goto stream;

 }

 if (!(UserName==0 || returnOption==0))

 {

 gotoxy(32,11);

 printf(“Administrator Name is Invalid.”);

 getch();

 validUserNameOption=0;

 }

 else

 validUserNameOption=1;

 }

 gotoxy(30,11);

 printf(“Enter Password: “);

 inc=0;

 while (inc<5)

 {

 passwd[inc]=getch();

 inc=inc+1;

 printf(“* “);

 }

 inc=0;

 while (inc<5)

 {

 tempo[inc]=passwd[inc];

 inc=inc+1;

 }

 while(getch()!=13);

 if (!strcmp(tempo, “admin12”))

 {

 gotoxy(28,13);

 printf(“You have Entered a Wrong Password. Please Try Again. “);

 getch();

 validUserPwdOption=0;

 validUserNameOption=0;

 }

 else

 {

 clrscr();

 gotoxy(24,11);

Appendix IV 525

 textcolor(YELLOW+BLINK);

 cprintf(“You Have Successfully Logged In.”);

 gotoxy(24,17);

 textcolor(YELLOW);

 printf(“Press Any Key to Continue.”);

 validUserPwdOption=1;

 validUserNameOption=1;

 getch();

 showAdminMenu=0;

 while (showAdminMenu==0)

 {

 clrscr();

 gotoxy(24,4);

 printf(“ADMIN OPTIONS”);

 gotoxy(26,9);

 printf(“Add New Employee [1]”);

 gotoxy(26,11);

 printf(“Show Daily Entries [2]”);

 gotoxy(26,13);

 printf(“Search Employee Record [3]”);

 gotoxy(26,15);

 printf(“Remove Employee [4]”);

 gotoxy(26,17);

 printf(“Close [5]”);

 gotoxy(24,21);

 printf(“Please enter your choice: “);

 selectAdminOption();

 }

 }

 }

stream:{}

}

/* This function provides the administrator level functionalities, such as Adding or deleting an
employee.*/

void selectAdminOption(void)

{

 char chc[1];

 int chooseNew,chooseShow,chooseSearch,chooseRemove,chooseClose;

 gets(chc);

Programming in ANSI C526

 chooseNew=strcmp(chc,”1”);

 chooseShow=strcmp(chc,”2”);

 chooseSearch=strcmp(chc,”3”);

 chooseRemove=strcmp(chc,”4”);

 chooseClose=strcmp(chc,”5”);

 if (!(chooseNew==0 || chooseShow==0 || chooseSearch==0 || chooseRemove==0 || chooseClose==0))

 {

 gotoxy(19,21);

 textcolor(RED+BLINK);

 cprintf(“Invalid Input!”);

 gotoxy(34,21);

 textcolor(YELLOW);

 cprintf(“Press any key to continue.”);

 }

 if (chooseNew==0)

 {

 clrscr();

 gotoxy(25,5);

 getData(1);

 }

 else if(chooseShow==0)

 {

 getData(2);

 }

 else if(chooseSearch==0)

 {

 clrscr();

 getData(3);

 }

 else if(chooseRemove==0)

 {

 getData(4);

 }

 else if (chooseClose==0)

 {

 showAdminMenu=1;

 }

}

/* This function retreives data from the database as well as do data processing according to user
requests.

Appendix IV 527

 The function provides functionality for menu options provided to both employee as well as
administrator user*/

void getData(int option)

{

 FILE *db,*tempdb;

 char anotherEmp;

 int choice;

 int showMenu,posx,posy;

 char checkSave,checkAddNew;

 int i;

 struct employee

 {

 char firstname[30];

 char lastname[30];

 char password[30];

 int empid;

 char loginhour;

 char loginmin;

 char loginsec;

 char logouthour;

 char logoutmin;

 char logoutsec;

 int yr;

 char mon;

 char day;

 };

 struct employee empData;

 char confirmPassword[30];

 long int size;

 char lastNameTemp[30],firstNameTemp[30],password[30];

 int searchId;

 char pass[30];

 char findEmployee;

 char confirmDelete;

 struct date today;

 struct time now;

 clrscr();

Programming in ANSI C528

 /* Opens the Employee Database*/

 db=fopen(“d:/empbase.dat”,”rb+”);

 if(db==NULL)

 {

 db=fopen(“d:/empbase.DAT”,”wb+”);

 if(db==NULL)

 {

 printf(“The File could not be opened.\n”);

 exit();

 }

 }

 printf(“Application Database \n”);

 size=sizeof(empData);

 showMenu=0;

 while(showMenu==0)

 {

 fflush(stdin);

 choice=option;

 /* Based on the choice selected by admin/employee, this switch statement processes the request*/

 switch(choice)

 {

 /* To add a new employee to the database*/

 case 1:

 fseek(db,0,SEEK_END);

 anotherEmp=’y’;

 while(anotherEmp==’y’)

 {

 checkAddNew=0;

 while(checkAddNew==0)

 {

 clrscr();

 gotoxy(25,3);

 printf(“ADD A NEW EMPLOYEE”);

 gotoxy(13,22);

 printf(“Warning: Password Must Contain Six(6) AlphaNumeric Digits.”);

 gotoxy(5,8);

 printf(“Enter First Name: “);

 scanf(“%s”,&firstNameTemp);

 gotoxy(5,10);

Appendix IV 529

 printf(“Enter Last Name: “);

 scanf(“%s”,&lastNameTemp);

 gotoxy(43,8);

 printf(“Enter Password: “);

 for (i=0;i<6;i++)

 {

 password[i]=getch();

 printf(“* “);

 }

 password[6]=’\0’;

 while(getch()!=13);

 gotoxy(43,10);

 printf(“Confirm Password: “);

 for (i=0;i<6;i++)

 {

 confirmPassword[i]=getch();

 printf(“* “);

 }

 confirmPassword[6]=’\0’;

 while(getch()!=13);

 if (strcmp(password,confirmPassword))

 {

 gotoxy(24,12);

 printf(“Passwords do not match.”);

 gotoxy(23,13);

 printf(“Press any key to continue.”);

 getch();

 }

 else

 {

 checkAddNew=1;

 rewind(db);

 empData.empid=0;

 while(fread(&empData,size,1,db)==1);

 if (empData.empid<2000)

 empData.empid=20400;

 empData.empid=empData.empid+1;

 gotoxy(29,16);

Programming in ANSI C530

 printf(“Save Employee Information? (y/n): “);

 checkSave=getche();

 if (checkSave==’y’)

 {

 strcpy(empData.firstname,firstNameTemp);

 strcpy(empData.lastname,lastNameTemp);

 strcpy(empData.password,password);

 empData.loginhour=’t’;

 empData.logouthour=’t’;

 empData.day=’j’;

 fwrite(&empData,size,1,db);

 }

 gotoxy(28,16);

 printf(“ “);

 gotoxy(28,16);

 printf(“Would like to add another employee? (y/n):”);

 fflush(stdin);

 anotherEmp=getche();

 printf(“\n”);

 }

 }

 }

 break;

 /* To view time records for all employees*/

 case 2:

 clrscr();

 gotoxy(21,2);

 printf(“VIEW EMPLOYEE INFORMATION”);

 gotoxy(1,5);

 printf(“Employee ID Employee Name Time Logged In Time Logged Out
 Date\n\n”);

 rewind(db);

 posx=3;

 posy=7;

 while(fread(&empData,size,1,db)==1)

 {

 empData.firstname[0]=toupper(empData.firstname[0]);

 empData.lastname[0]=toupper(empData.lastname[0]);

 gotoxy(posx,posy);

 printf(“%d”,empData.empid);

Appendix IV 531

 gotoxy(posx+10,posy);

 printf(“| %s, %s”,empData.lastname,empData.firstname);

 gotoxy(posx+30,posy);

 if (empData.loginhour==’t’)

 {

 printf(“| Not Logged In”);

 }

 else

 printf(“| %d:%d:%d”,empData.loginhour,empData.loginmin,empData.loginsec);

 gotoxy(posx+49,posy);

 if (empData.logouthour==’t’)

 {

 printf(“| Not Logged Out”);

 }

 else

 printf(“| %d:%d:%d”,empData.logouthour,empData.logoutmin,empData.logoutsec);

 if (empData.day==’j’)

 {

 gotoxy(posx+69,posy);

 printf(“| No Date”);

 }

 else

 {

 gotoxy(posx+73,posy);

 printf(“| %d/%d/%d”,empData.mon,empData.day,empData.yr);

 }

 posy=posy+1;

 }

 getch();

 printf(“\n”);

 break;

 /* To search a particular employee and view their time records*/

 case 3:

 clrscr();

 gotoxy(27,5);

 printf(“SEARCH EMPLOYEE INFORMATION”);

 gotoxy(25,9);

 printf(“Enter Employee Id to Search: “);

Programming in ANSI C532

 scanf(“%d”, &searchId);

 findEmployee=’f’;

 rewind(db);

 while(fread(&empData,size,1,db)==1)

 {

 if (empData.empid==searchId)

 {

 gotoxy(33,11);

 textcolor(YELLOW+BLINK);

 cprintf(“Employee Information is Available.”);

 textcolor(YELLOW);

 gotoxy(25,13);

 printf(“Employee name is: %s

 %s”,empData.lastname,empData.firstname);

 if(empData.loginhour==’t’)

 {

 gotoxy(25,14);

 printf(“Log In Time: Not Logged In”);

 }

 else

 {

 gotoxy(25,14);

 printf(“Log In Time is:
 %d:%d:%d”,empData.loginhour,empData.loginmin,empData.loginsec);

 }

 if(empData.logouthour==’t’)

 {

 gotoxy(25,15);

 printf(“Log Out Time: Not Logged Out”);

 }

 else

 {

 gotoxy(25,15);

 printf(“Log Out Time is:
 %d:%d:%d”,empData.logouthour,empData.logoutmin,empData.logoutsec);

 }

 findEmployee=’t’;

 getch();

 }

 }

 if (findEmployee!=’t’)

 {

 gotoxy(30,11);

Appendix IV 533

 textcolor(YELLOW+BLINK);

 cprintf(“Employee Information not available. Please modify the search.”);

 textcolor(YELLOW);

 getch();

 }

 break;

 /* To remove entry of an employee from the database*/

 case 4:

 clrscr();

 gotoxy(25,5);

 printf(“REMOVE AN EMPLOYEE”);

 gotoxy(25,9);

 printf(“Enter Employee Id to Delete: “);

 scanf(“%d”, &searchId);

 findEmployee=’f’;

 rewind(db);

 while(fread(&empData,size,1,db)==1)

 {

 if (empData.empid==searchId)

 {

 gotoxy(33,11);

 textcolor(YELLOW+BLINK);

 cprintf(“Employee Information is Available.”);

 textcolor(YELLOW);

 gotoxy(25,13);

 printf(“Employee name is: %s %s”,empData.lastname,empData.firstname);

 findEmployee=’t’;

 }

 }

 if (findEmployee!=’t’)

 {

 gotoxy(30,11);

 textcolor(YELLOW+BLINK);

 cprintf(“Employee Information not available. Please modify the search.”);

 textcolor(YELLOW);

 getch();

 }

 if (findEmployee==’t’)

 {

Programming in ANSI C534

 gotoxy(29,15);

 printf(“Do you want to Delete the Employee? (y/n)”);

 confirmDelete=getche();

 if (confirmDelete==’y’ || confirmDelete==’Y’)

 {

 tempdb=fopen(“d:/tempo.dat”,”wb+”);

 rewind(db);

 while(fread(&empData,size,1,db)==1)

 {

 if (empData.empid!=searchId)

 {

 fseek(tempdb,0,SEEK_END);

 fwrite(&empData,size,1,tempdb);

 }

 }

 fclose(tempdb);

 fclose(db);

 remove(“d:/empbase.dat”);

 rename(“d:/tempo.dat”,”d:/empbase.dat”);

 db=fopen(“d:/empbase.dat”,”rb+”);

 }

 }

 break;

 /* To login an employee into the system and record the login date and time*/

 case 5:

 clrscr();

 gotoxy(20,4);

 printf(“DAILY EMPLOYEE TIME RECORDING SYSTEM”);

 gotoxy(20,23);

 printf(“Warning: Please Enter Numeric Values Only.”);

 gotoxy(23,7);

 printf(“Enter Your Id to Login: “);

 scanf(“%d”, &searchId);

 gotoxy(20,23);

 printf(“ “);

 findEmployee=’f’;

 rewind(db);

 while(fread(&empData,size,1,db)==1)

 {

 if (empData.empid==searchId)

 {

Appendix IV 535

 gotoxy(23,8);

 printf(“Enter Your Password: “);

 for (i=0;i<6;i++)

 {

 pass[i]=getch();

 printf(“* “);

 }

 pass[6]=’\0’;

 while(getch()!=13);

 if (strcmp(empData.password,pass))

 {

 gotoxy(23,11);

 textcolor(YELLOW+BLINK);

 cprintf(“You Have Supplied a Wrong Password.”);

 textcolor(YELLOW);

 findEmployee=’t’;

 getch();

 break;

 }

 gotoxy(23,11);

 textcolor(YELLOW+BLINK);

 cprintf(“You have successfully Logged In the System.”);

 textcolor(YELLOW);

 gotoxy(23,13);

 printf(“Employee name: %s %s”,empData.lastname,empData.firstname);

 gettime(&now);

 getdate(&today);

 gotoxy(23,14);

 printf(“Your LogIn Time: %2d:%2d:%2d”,now.ti_min,now.ti_hour,now.ti_sec);

 gotoxy(23,15);

 printf(“Your Log In Date: %d/%d/%d”,today.da_mon,today.da_day,today.da_year);

 empData.day=today.da_day;

 empData.mon=today.da_mon;

 empData.yr=today.da_year;

 fseek(db,-size,SEEK_CUR);

 empData.loginhour=now.ti_min;

Programming in ANSI C536

 empData.loginmin=now.ti_hour;

 empData.loginsec=now.ti_sec;

 fwrite(&empData,size,1,db);

 findEmployee=’t’;

 getch();

 }

 }

 if (findEmployee!=’t’)

 {

 gotoxy(30,11);

 textcolor(YELLOW+BLINK);

 cprintf(“Employee Information is not available.”);

 textcolor(YELLOW);

 getch();

 }

 break;

 /* To logout an employee and record the logout date and time*/

 case 6:

 clrscr();

 gotoxy(20,4);

 printf(“DAILY EMPLOYEE TIME RECORDING SYSTEM”);

 gotoxy(20,23);

 printf(“Warning: Please Enter Numeric Values Only.”);

 gotoxy(23,7);

 printf(“Enter Your Id to Logout: “);

 scanf(“%d”, &searchId);

 gotoxy(20,23);

 printf(“ “);

 findEmployee=’f’;

 rewind(db);

 while(fread(&empData,size,1,db)==1)

 {

 if (empData.empid==searchId)

 {

 gotoxy(23,8);

 printf(“Enter Password: “);

 for (i=0;i<6;i++)

Appendix IV 537

 {

 pass[i]=getch();

 printf(“* “);

 }

 pass[6]=’\0’;

 while(getch()!=13);

 if (strcmp(empData.password,pass))

 {

 gotoxy(30,11);

 textcolor(YELLOW+BLINK);

 cprintf(“You Have Supplied a Wrong Password.”);

 textcolor(YELLOW);

 findEmployee=’t’;

 getch();

 break;

 }

 gotoxy(23,11);

 textcolor(YELLOW+BLINK);

 cprintf(“You have successfully Logged Out of the System.”);

 textcolor(YELLOW);

 gotoxy(23,13);

 printf(“Employee name is: %s

 %s”,empData.lastname,empData.firstname);

 gettime(&now);

 getdate(&today);

 gotoxy(23,14);

 printf(“Your Log Out Time:

 %2d:%2d:%2d”,now.ti_min,now.ti_hour,now.ti_sec);

 gotoxy(23,15);

 printf(“Your Log Out Date:

 %d/%d/%d”,today.da_mon,today.da_day,today.da_year);

 fseek(db,-size,SEEK_CUR);

 empData.logouthour=now.ti_min;

 empData.logoutmin=now.ti_hour;

 empData.logoutsec=now.ti_sec;

 fwrite(&empData,size,1,db);

 findEmployee=’t’;

 getch();

 }

Programming in ANSI C538

 }

 if (findEmployee!=’t’)

 {

 gotoxy(23,11);

 textcolor(YELLOW+BLINK);

 cprintf(“Employee Information is not available.”);

 textcolor(YELLOW);

 getch();

 }

 break;

 /* Show previous menu*/

 case 9:

 printf(“\n”);

 exit();

 }

 fclose(db);

 showMenu=1;

 }

 }

Appendix IV 539

Programming in ANSI C540

Appendix IV 541

Programming in ANSI C542

Appendix IV 543

Programming in ANSI C544

Appendix IV 545

Programming in ANSI C546

Appendix IV 547

1 INTRODUCTION

2 NEW KEYWORDS

_Bool

_Complex

_Imaginary

inline

restrict

3 NEW COMMENT

C99 FEATURESV
APPENDIX

Appendix V 549

 // A comment line

 if (x > y) // Testing

 printf(..........); // Printing

 int m; // Declaration

4 NEW DATA TYPES

 and

_Bool

_Complex

_Imaginary

long long long long

int and

_Bool Type

_Bool

_Bool x, y;

x = 1;

y = 0;

 _Bool b = m > n;

Complex and_Imaginary

The long long Types

 long long int 63 –
64

5 DECLARATION OF VARIABLES

Programming in ANSI C550

 main()

 {

 int m;

 m = 100;

 int n; /* Legal in C99*/

 n = 200;

 }

for

 main()

 {

 for (int i = 0; i<5; i + +)

 {

 }

 }

for

 6 CHANGES TO I/O FORMATS

long long ll to

scanf() and printf()

hh char

7 HANDLING OF ARRAYS

Appendix V 551

variable-length arrays.

Example:

 main()

 {

 int m, n;

 scanf(“%d %d”, &m, &n);

 float matrix [m] [n]; /* variable-length array */

 }

static

 void array (int x [static 20])

 {

 }

static x

 {

 float x;

 int number;

 float list []; /* flexible array */

 };

8 FUNCTIONS IMPLEMENTATION

 ∑ int” rule

 ∑

Programming in ANSI C552

 ∑

 ∑ inline

int

 prod(int a, int b) /* return type is int by default */

 {

 return (a*b);

 }

int int rule is not valid in

 int prod(int a, int b) /* explicit type specification */

 {

 return (a*b);

 }

int

 fun1(const a) /* a is int by default */

 {

 }

and

 fun2 (register x, register y) /* x and y are int */

 {

 }

int

Appendix V 553

 float value (float x, float y)

 {

 return; /* no value included */

 }

 return(p); /* p contains float value */

 return(p);

 return o.o; /* when no value to be returned*/

inline inline

 inline mul (int x, int y)

 {

 return (x*y);

 }

inline functions.

9 RESTRICTED POINTERS

restrict

restrict is referred to as a restricted pointer

 int *restrict p1;

 void *restrict p2;

restrict

malloc ()

Programming in ANSI C554

10 CHANGES TO COMPILER LIMITATIONS

 ∑

 ∑

 ∑

 ∑

11 OTHER CHANGES

 ∑

 ∑

 ∑

Barkakati, N., Microsoft C Bible, SAMS, 1990.

Barker, L., C Tools for Scientists and Engineers, McGraw-Hill,1989.

Berry, R. E. and Meekings; B.A.E., A Book on C, Macmillan, 1987.

Hancock, L. and Krieger, M., The C Primer, McGraw-Hill, 1987.

Hunt, W.J., The C Toolbox, Addison-Weslary, 1985.

Hunter, B. H., Understanding C, Sybex, 1985.

Kernighan, B. W. and Ritchie, D. M., The C Programming Language, Prentice-Hall, 1977.

Kochan, S. G., Programming in C, Hyden, 1983.

Miller, L. H. and Quilici, E. A., C Programming Language: An Applied Perspective, John Wiley & Sons,

1987.

Purdum, J. J., C Programming Guide, Que Corporation,1985.

Radcliffe, R. A., Encyclopaedia C, Sybex 1990.

Schildt, H., C Made Easy, Osborne McGraw-Hill, 1987.

Schildt, H., Advanced C, Osborne McGraw-Hill, 1988.

Schildt, H., C: The Complete Reference, McGraw-Hill, 2000.

Tim Grady, M., Turbo C! Programming Principles and Practices, McGraw-Hill 1989.

WIS Staff, C user’s Handbook, Addison-Wesely, 1984.

Wortman, L. A., and Sidebottom, T.O., The C Programming Tutor, Prentice-Hall, 1984.

BIBLIOGRAPHY

Character

 Constants 28

 Strings 28, 91, 103

 Types 33, 193

Command Line Arguments 414, 416, 418

Common Programming Errors 469, 477

Conditional Operator 52, 112

Constants 5, 8, 9

Control Statements 112, 467, 470

Controlled Loop 152, 153

Conversions in Expressions 68

D

Data

 Structures 192, 193, 202

 Types 1, 3, 7

 Types and their Keywords 34

De Morgan’s Rule 116

Decimal Integer 7, 25, 26,

Decision-making Statements 112

Declaration of Storage Class 37

Declaration of Variables 33, 34, 35

Declaring a Variable as Constant 45

 Volatile 45

Do Statement 151, 153

Dynamic Arrays 196, 216

Dynamic Memory Allocation 192, 216, 419

E

36

Executable File 16

INDEX

Symbols

#elif Directive 461

8, 9, 10

#error Directive 462

#include 5, 10, 11

#pragma Directive 461

7, 31, 70

<string.h> 202, 244, 255

A

A.out 16, 17

ANSI C 2, 3, 22

Application of Linked Lists 440, 441

Arguments 4, 6, 7

Arithmetic Operators 9, 52, 53

Array 25, 31, 36

Array of Pointers 374

Arrays vs Structures 326

Assignment Operators 39, 52, 57

B

BCPL 1

Bit Field 324, 344

Bitwise Logical Operators 480, 481

Bitwise Operators 52, 60, 61

Break Statement 127, 129, 130

C

C Tokens 24

C99 2, 3, 25

Calloc 216, 419, 420

Index 557

External Variables 270, 302

F

Fclose 396, 397

File 10, 11, 12

Float Values 231, 290, 292

Floating Point 7, 9, 27

Floating Point Types 33

Fopen 396, 397, 399

For Statement 107, 153, 158

Fprintf 396, 402, 403

Free 13, 18, 99

Fscanf 396, 402, 403

Fseek 395, 396, 402

Ftell 395, 396, 407

Function 3, 4, 5

 Call 72, 83, 108

 Declaration 274, 280, 287

G

Getc 61, 66, 89

Getchar 61, 84, 85

Gets 143, 202, 241

Getw 396, 400, 401

Global Variables 13, 304, 305

Goto 25, 112

Goto Statement 112, 135, 136

I

I/O Operations 287, 395, 402

IF Statement 81, 112, 113

IF.....else Statement 113, 116, 179

Increment and Decrement Operators 52, 59, 60

Integer

 Constant 25, 26, 27

 Numbers 27, 32, 88

 Types 32

J

Jumps in Loops 168

K

22

L

Linked Lists 193, 216, 217

Logical Operators 52, 56, 57

M

Macro Substitution 452, 453

3, 4, 13

Malloc 216, 231, 419

Mantissa 27

Masking 483, 484

Mathematical Functions 10, 16, 18

Memory Layout 211

Modular Programming 270, 273

Multi-Dimensional Arrays 215, 217, 300

N

Nesting of

 for Loops 164

 Functions 244

 If....else Statements 120

Null Character 196, 198, 217

O

One-Dimensional Arrays 193, 194, 195

Operator 3, 9, 24

Operator Precedence 71

P

Pointer 31, 96

 Expressions 366

 Operations 368

 Variables 294, 357

59

Preprocessor Directives 9, 12, 452

Printf 1, 3, 4

Printing of Strings 100

478

Index558

Ptr 333, 334

Putc 87

Putchar 87

Puts 136, 249, 261

Putw 396, 400

R

Reading a Character 84

Real

 Arithmetic 52, 54

 Constants 27

 Numbers 7, 27, 33

Realloc 216, 419, 420

Recursion 270, 295, 296

Register Variables 302, 310

Relational Operators 52, 55, 56

Return

 Statement 275, 276, 277

 Values 261, 281

S

Scanf 5, 22, 40

Searching and Sorting 202

Sentinel Loops 153

Special Operators 52, 60, 61

Static Variables 39, 49, 50

253

253, 254

253, 255

String

 Constants 28, 46, 104

 Variables 238, 254, 255

String-Handling Functions 253

Stringizing Operator # 461, 462

Strings 4, 5, 17

Strings to Functions 301, 318

301, 318

Structure 1, 3, 12

Structure Variables 324, 325

Structures and Functions 340

Structures within Structures 338

Switch Statement 112, 127, 128

T

9, 19

The #include Directive 12, 19

The ? : Operator 131

The Comma Operator 61

The else if Ladder 123, 124

The Main Function 6, 9, 13

The Size of Operator 32, 81

Token Pasting Operator ## 462

Two-Dimensional Arrays 193, 203, 204

Types of Linked Lists 428, 430, 449

U

Unions 193, 324

 Functions 10, 13, 270

 Type Declaration 36

V

Variable 3, 7, 9

Void Types 33

W

While Statement 38, 56, 151

Writing a Character 87

	Cover
	Contents
	1 Overview of C
	1.1 History of C
	1.2 Importance of C
	1.3 Sample Program 1: Printing a Message
	1.4 Sample Program 2: Adding Two Numbers
	1.5 Sample Program 3: Interest Calculation
	1.6 Sample Program 4: Use of Subroutines
	1.7 Sample Program 5: Use of Math Functions
	1.8 Basic Structure of C Programs
	1.9 Programming Style
	1.10 Executing a 'C' Program
	1.11 Unix System
	1.12 MS-DOS System
	Review Questions
	Programming Exercises

	2 Constants, Variables, and Data Types
	2.1 Introduction
	2.2 Character Set
	2.3 C Tokens
	2.4 Keywords and Identifiers
	2.5 Constants
	2.6 Variables
	2.7 Data Types
	2.8 Declaration of Variables
	2.9 Declaration of Storage Class
	2.10 Assigning Values to Variables
	2.11 Defining Symbolic Constants
	2.12 Declaring a Variable as Constant
	2.13 Declaring a Variable as Volatile
	2.14 Overflow and Underflow of Data
	Review Questions
	Programming Exercises

	3 Operators and Expressions
	3.1 Introduction
	3.2 Arithmetic Operators
	3.3 Relational Operators
	3.4 Logical Operators
	3.5 Assignment Operators
	3.6 Increment and Decrement Operators
	3.7 Conditional Operator
	3.8 Bitwise Operators
	3,9 Special Operators
	3.10 Arithmetic Expressions
	3.11 Evaluation of Expressions
	3,12 Precedence ot Arithmetic Operators
	3.13 Some Computational Problems
	3,14 Type Conversions in Expressions
	3,15 Operator Precedence and Associativity
	3.16 Mathematical Functions
	Review Questions
	Programming Exercises

	4 Managing Input and Output Operations
	4.1 Introduction
	4.2 Reading a Character
	4.3 Writing a Character
	4.4 Formatted Input
	4.5 Formatted Output
	Review Questions
	Programming Exercises

	5 Decision Making and Branching
	5.1 Introduction
	5,2 Decision Making with If Statement
	5.3 Simple If Statement
	5.4 The If .. , .. Else Statement
	5,5 Nesting ot It
	5.6 The Else If Ladder
	5.7 The Switch Statement
	5.8 The? : Operator
	5.9 The Gata Statement
	Review Questions
	Programming Exercises

	6 Decision Making and Looping
	6.1 Introduction
	6,2 The while Statement
	6.3 The do Statement
	6.4 The for Statement
	6.5 Jumps in Loops
	6.6 Concise Test Expressions
	Review Questions
	Programming Exercises

	7 Arrays
	7.1 Introduction
	7.2 One-Dimensional Arrays
	7.3 Declaration of One-Dimensional Arrays
	7.4 Initialization of One-Dimensional Arrays
	7.5 Two-Dimensional Arrays
	7.6 Initializing Two-Dimensional Arrays
	7.7 Multi-Dimensional Arrays
	7.8 Dynamic Arrays
	7.9 More about Arrays
	Review Questions
	Programming Exercises

	8 Character Arrays and Strings
	8.1 Introduction
	8.2 Declaring and Initializing String Variables
	8.3 Reading Strings from Terminal
	8.4 Writing Strings to Screen
	8.5 Arithmetic Operations on Characters
	8.6 Putting Strings Together
	8.7 Comparison of Two Strings
	8.8 String-Handling Functions
	8.9 Table of Strings
	8.10 Other Features of Strings
	Review Questions
	Programming Exercises

	9 User-Defilled Functions
	9.1 Introduction
	9.2 Need for UserwDefined Functions
	9.3 A MultiwFunction Program
	9A Elements of UserwDefined Functions
	9.5 Definition of Functions
	9.6 Return Values and Their Types
	9.7 Function Calls
	9.8 Function Declaration
	9.9 Category of Functions
	9.10 No Arguments and No Return Values
	9.11 Arguments but No Return Values
	9.12 Arguments with Return Values
	9.13 No Arguments but Returns a Value
	9.14 Functions that Return Multiple Values
	9.15 Nesting of Functions
	9.16 Recursion
	9.17 Passing Arrays to Functions
	9.18 Passing Strings to Functions
	9.19 The Scope, Visibility and Lifetime of Variables
	9.20 Multifile Programs
	Review Questions
	Programming Exercises

	10 Structures and Unions
	10.1 Introduction
	10.2 Defining a Structure
	10.3 Declaring Structure Variables
	iDA Accessing Structure Members
	10.5 Structure Initialization
	10.6 Copying and Comparing Structure Variables
	10.7 Operations on Individual Members
	10.8 Arrays of Structures
	10.9 Arrays within Structures
	10.10 Structures within Structures
	10.11 Structures and Functions
	10.12 Unions
	10.13 Size of Structures
	10.14 Bit Fields
	Review Questions
	Programming Exercises

	11 Pointers
	11.1 Introduction
	11.2 Understanding Pointers
	11.3 Accessing the Address of a Variable
	11.4 Declaring Pointer Variables
	11.5 Initialization of Pointer Variables
	11,6 Accessing a Variable through its Pointer
	11.7 Chain of Pointers
	11.8 Pointer Expressions
	11.9 Pointer Increments and Scale Factor
	11.10 Pointers and Arrays
	11,11 Pointers and Character Strings
	11.12 Array of Pointers
	11,13 Pointers as Function Arguments
	11,14 Functions Returning Pointers
	11.15 Pointers to Functions
	11.16 Pointers and Structures
	11.17 Troubles with Pointers'
	Review Questions
	Programming Exercises

	12 File Management in C
	12.1 Introduction
	12.2 Defining and Opening a File
	12.3 Closing a File
	12.4 InpuVOutput Operations on Files
	12.5 Error Handling During I/O Operations
	12.6 Random Access to Files
	12.7 Command Line Arguments
	Review Questions
	Programming Exercises

	13 Dynamic Memory Allocation and Linked Lists
	13.1 Introduction
	13.2 Dynamic Memory Allocation
	13.3 Allocating a Block of Memory: Malloc
	13.4 Allocating Multiple Blocks of Memory: Cal10c
	13.5 Releasing the used Space: Free
	13.6 Altering the Size of a Block: Realloc
	13.7 Concepts of Linked Lists
	13.8 Advantages of Linked Lists
	13.9 Types of Linked Lists
	13.10 Pointers Revisited
	13.11 Creating a Linked List
	13.12 Inserting an Item
	13.13 Deleting an Item
	13.14 Application of Linked Lists
	Review Questions
	Programming Exercises

	14 The Preprocessor
	14.1 Introduction
	14.2 Macro Substitution
	14.3 File Inclusion
	14.4 Compiler Control Directives
	14.5 ANSI Additions
	Review Questions
	Programming Exercises

	15 Developing a C Program: Some Guidelines
	15.1 Introduction
	15.2 Program Design
	15.3 Program Coding
	15.4 Common Programming Errors
	15.5 Program Testing and Debugging
	15.6 Program Efficiency
	Review Questions

	Appendix I: Bit-Level Programming
	Appendix II: ASCII Values of Characters
	Appendix III: ANSI C Ul:irary Functions
	Appendix IV: Projects
	Appendix V: C99 Features
	Bibliography
	Index

